跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/16 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹哲瑋
研究生(外文):Jhe-Wei Cao
論文名稱:再生能源單相電壓型換流器之功率脈動補償與功率控制
論文名稱(外文):Power Pulsation Decoupling and Power Control of a Single-Phase Voltage-Source Inverter for Renew Energy Conversion System
指導教授:吳啟耀 博士
指導教授(外文):Chi-Yao Wu
口試委員:黃仲欽 博士王勝寬 博士
口試委員(外文):Jonq-Chin HwangSheng-Kuan Wang
口試日期:2014-07-21
學位類別:碩士
校院名稱:明志科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:140
中文關鍵詞:市電併聯型太陽能發電系統二階廣義積分法數位鎖相迴路功率控制功率脈動補償
外文關鍵詞:Grid-connected PV systemSOGI-QSGDigital PLLPower controlPower pulsation compensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要研製一套單相市電併聯型太陽能發電系統之功率解耦控制與功率脈動補償系統,以TI TMS320F28335數位訊號處理器為控制核心,採用同步座標軸轉換之數位鎖相迴路,並具有單相市電併聯功率解耦控制與功率脈動補償之功能。數位鎖相迴路使用二階廣義積分法作為正交二相信號產生器,透過同步座標軸轉換及相位角控制迴路取得單相市電併聯所需之市電頻率、相位角和振幅等參數,並具有抗雜訊的能力。於功率控制部分,利用單相數位鎖相迴路得到的電壓電流參數,可計算得知系統目前輸出的有效功率及無效功率,接著透過同步座標轉換法將有效功率及無效功率進行解耦控制。再透過本文中提出的改良型單相系統之功率控制,控制注入於市電系統的有效功率與無效功率的成份,可以改善系統功率因數、提高系統效率及降低電流諧波成份,改善系統整體電力品質。
單相電壓型換流器的輸出功率具有兩倍頻率的功率脈動。此兩倍頻率的功率脈動將會增加換流器的輸出電流諧波及減少如太陽電池及風力發電機等再生能源模組的使用率。這功率脈動的頻率是兩倍於電網的頻率,且沒有任何調變切換頻率技術或改變換流器結構就可以減少此功率的需求。因此必須外加一個功率脈動補償電路來提供此脈動功率之需求。故本文提出一個結合數位鎖相迴路、功率計算與控制及直流電側的雙向降升壓轉換電路之功率脈動補償方法。實驗結果顯示應用此方法能有效的減少功率脈動所引起的兩倍頻電流,使再生能源模組的輸出電流幾乎是直流沒有脈動。

This thesis developed a power control with a power pulsation compensation method for a single-phase grid-connected PV system. Use TI TMS320F28335 digital signal processor as the control center to build a digital phase-lock-loop (DPLL), power control, and power pulsation compensation. Based on the DPLL, the frequency, phase angle, and amplitude of the grid voltage are obtained by the second-order generalized integrator quadrature-signal generator (SOGI-QSG), synchronous frame conversion, and phase angle control loop. The DPLL can reduce the interference of the harmonics. Through the improved single-phase power control method proposed in this paper to control active power and reactive power ingredients which are injected into the grid system, the power factor and efficiency are improved, the current harmonics are reduced dramatically, and the power quality of the overall system is also enhanced.
The output power of a single-phase voltage-source inverter has inherently twice frequency power pulsation that causes the output current distortion and reduces the utility of renew power module. The power pulsation is double the line frequency and no manipulation of switching frequency or inverter topology can reduce the energy requirements. In this work a power pulsation decoupling method is proposed by integrated with digital phase lock-loop, power control and a bi-direction buck-boost converter at dc side. Experimental results have demonstrated that the current produced by power pulsation is reduced dramatically and the output current of a renew energy module is almost constant.

明志科技大學碩士學位論文 指導教授推薦書 i
明志科技大學碩士學位論文 口試委員會審定書 ii
明志科技大學學位論文授權書 iii
誌 謝 iv
摘 要 v
Abstract vi
目 錄 vii
表目錄 xi
圖目錄 xiii
第一章 緒 論 1
1.1 研究背景與動機 1
1.2 文獻探討 2
1.2.1 最大功率追蹤 2
1.2.2 市電鎖相迴路 4
1.2.3 市電併聯型濾波器 4
1.2.4 功率控制 5
1.2.5 單相功率脈動補償 6
1.3 本文大綱 7
第二章 緒 論 9
2.1 前言 9
2.2 太陽能電池簡介 10
2.2.1 太陽能電池模組等效電路 12
2.2.2 太陽能電池模組等效電路模擬 13
2.3 最大功率追蹤 18
2.3.1 電壓回授法 18
2.3.2 功率回授法 18
2.3.3 擾動觀察法 18
2.3.4 增量電導法 19
2.3.5 直線近似法 19
2.3.6 實際量測法 19
2.3.7 固定電壓法 20
2.3.8 抗雜訊調變步距法 20
2.4 最大功率追蹤電路 21
2.4.1 直流對直流推挽式升壓型轉換器 21
2.4.2 直流對直流推挽式升壓型轉換器的電感設計 24
2.4.3 直流對直流推挽式升壓型轉換器的變壓器設計 33
2.4.4 直流對直流推挽式升壓型轉換器的電容設計 34
2.5 市電同步訊號檢測 35
2.6 直流對交流換流器 36
2.6.1 正弦脈波寬度調變 37
2.6.2 正弦脈波寬度調變切換方式 40
2.7 換流器LCL濾波器 42
2.8 DSP軟體及I/O規劃 48
2.9 市電併聯規範 49
第三章 功率控制 51
3.1 功率控制前言 51
3.2 正交二相信號產生方法 51
3.2.1 二階廣義積分正交信號產生器(SOGI-QSG) 52
3.2.2 二階廣義積分正交信號產生器之實現 54
3.3 正交二相同步信號檢測迴路 56
3.4 單相市電併聯型系統之鎖相迴路 60
3.5 單相市電併聯型系統之功率分析 62
3.6 單相系統之功率控制 65
3.7 改良型單相系統之功率控制 72
3.8 功率控制之總結 74
第四章 單相功率脈動補償 75
4.1 單相功率脈動之前言 75
4.2 單相功率脈動 75
4.3 單相功率脈動補償電路 77
4.4 單相功率脈動補償原理 80
4.5 單相功率脈動模擬 82
4.6 單相功率脈動控制架構 87
4.7 單相功率脈動之總結 88
第五章 功率控制與功率脈動補償之實測與驗證 89
5.1 系統實測與驗證之前言 89
5.2 市電併聯實測與驗證 89
5.3 功率控制實測與驗證 93
5.3.1 系統輸出有效功率1000W、無效功率0VAR 93
5.3.2 系統輸出有效功率500W、無效功率500VAR 95
5.3.3 系統輸出有效功率500W、無效功率-500VAR 97
5.3.4 功率控制實測與驗證之總結 99
5.4 功率脈動補償實測與驗證 100
5.4.1 獨立型系統之功率脈動補償實測與驗證 100
5.4.2 併聯型系統之功率脈動補償實測與驗證 105
5.4.3 功率脈動補償實測與驗證之總結 115
第六章 結論與未來研究方向 116
6.1 結論 116
6.2 未來研究方向 118

[1] M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez, and L. A. Alvarado, “Performance evaluation of stand-alone wind/photovoltaic generating systems,” in IEEE Power Engineering Society Summer Meeting, 1999, vol. 1, pp. 555-559, Jun., 1999.
[2] 陳敬恆, “單相市電併聯型太陽能發電系統之改良,” 明志科技大學碩士論文, 民國一百年.
[3]溫書賢, “具功率控制之單相市電併聯太陽能發電系統,” 明志科技大學碩士論文, 民國一零一年.
[4]Z. M. Salameh, F. Dagher, and W. A. Lynch, “Step-down maximum power point tracker for photovoltaic systems,” Solar Energy, vol. 46, no. 5, pp. 279-282, 1991.
[5]J. Youngseok, S. Junghun, Y. Gwonjong, and C. Jaeho, “Improved perturbation and observation method (IP&O) of MPPT control for photovoltaic power systems,” in Photovoltaic Specialists Conf., 2005. Conf. Rec. of the Thirty-first IEEE, pp. 1788-1791, Jan., 2005.
[6] M. Lokanadham and K. Vijaya Bhaskar, “Incremental Conductance Based Maximum Power Point Tracking (MPPT) for Photovoltaic System,” Int. J. of Eng. Research and Applicat. (IJERA), vol. 2, no. 2, pp.1420-1424, Mar.-Apr., 2012.
[7]J.-W. Choi, Y.-K. Kim, and H.-G. Kim, “Digital PLL control for single-phase photovoltaic system,” Electric Power Applications, IEE Proc. -, vol. 153, no. 1, pp. 40- 46, Jan., 2006.
[8]S. Sakamoto, T. Izumi, T. Yokoyama, and T. Haneyoshi, “A new method for digital PLL control using estimated quadrature twophase frequency detection,” in Power Conversion Conf., 2002. PCC Osaka 2002. Proc. of the, vol. 2, pp. 671-676, 2002.
[9]L. N. Amuda, B. J. Cardoso Filho, S. M. Silva, S. R. Silva, and A. S. A. C. Diniz, “Wide bandwidth single and three-phase PLL structures for grid-tiedPV systems,” in Photovoltaic Specialists Conf., 2000. Conf. Rec. of the Twenty-Eighth IEEE, pp. 1660-1663, 2000.
[10]M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A New Single-Phase PLL Structure Based on Second Order Generalized Integrator,” in Power Electronics Specialists Conf., 2006. PESC ’06. 37th IEEE, pp. 1- 6, Jun., 2006.
[11]S. M. Silva, B. M. Lopes, B. J. C. Filho, R. P. Campana, and W. C. Bosventura, “Performance evaluation of PLL algorithms for single-phase grid-connected systems,” in Conf. Rec. of the 2004 IEEE Industry Applications Conf., 2004. 39th IAS Annu. Meeting, vol. 4, pp. 2259- 2263, Oct., 2004.
[12]M. Saitou, N. Matsui, and T. Shimizu, “A control strategy of single-phase active filter using a novel d-q transformation,” in Industry Applications Conf., 2003. 38th IAS Annu. Meeting. Conf. Rec. of the, vol. 2, pp. 1222- 1227, Oct., 2003.
[13]F. J. Rodriguez, E. Bueno, M. Aredes, L. G. B. Rolim, F. A. S. Neves, and M. C. Cavalcanti, “Discrete-time implementation of second order generalized integrators for grid converters,” in 34th Annu. Conf. of IEEE Industrial Electronics, 2008. IECON 2008, pp. 176-181, Nov., 2008.
[14] N. Mohan, T. M. Undeland, W. P. Robbins, and 江炫樟 譯, 電力電子學, 3rd ed. 全華科技圖書, 2004.
[15] D. W. Hart and王順忠 譯, 電力電子學, 東華書局, 1998.
[16]Seung-Gi Jeong and Min-Ho Park, “The analysis and compensation of dead-time effects in PWM inverters,” IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 108-114, Apr., 1991.
[17]C. Hanju and T. K. Vu, ”Comparative analysis of low-pass output filter for single-phase grid-connected Photovoltaic inverter,” in Applied Power Electronics Conf. and Expo. (APEC), Twenty-Fifth Annual IEEE, pp. 1659-1665, Feb., 2010.
[18]L. Fei, Z. Xiaoming, Z. Yan, and D. Shanxu, “Design and research on parameter of LCL filter in three-phase grid-connected inverter,” in Power Electronics and Motion Control Conf., 2009. IPEMC '09. IEEE 6th Int., pp. 2174-2177, May, 2009.
[19]K. Hyosung and K. Kyoung-Hwan, ”Filter design for grid connected PV inverters,” in Sustainable Energy Technologies, 2008. ICSET 2008. IEEE Int. Conf. on, pp. 1070-1075, Nov., 2008.
[20]P. Channegowda and V.John, “Filter Optimization for Grid Interactive Voltage Source Inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4106 – 4114, Dec. 2010.
[21] K. C. A. De Souza, W. M. dos Santos, and D. C. Martins, “Single-Phase PV System with Active and Reactive Power Control and Optimization of the Ferrite Core Volume,” 2010 IEEE Int. Conf. on Sustainable Energy Technologies, pp. 1-6, Dec., 2010.
[22] S. Samerchur, S. Premrudeepreechacharn, Y. Kumsuwun, and K. Higuchi “Power Control of Single-Phase Voltage Source Inverter for Grid-Connected Photovoltaic Systems,” IEEE/PES Power Systems Conf. and Expo., pp. 1-6, Mar., 2011.
[23] W. Ruxi, W. Fei, D. Boroyevich, R. Burgos, L. Rixin, N. Puqi, and K. Rajashekara, “A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1430-1443, May, 2011.
[24] Shengfang Fan, Yaosuo Xue, and Kai Zhang, “A novel active power decoupling method for single-phase photovoltaic or energy storage applications,” in Energy Conversion Congr. and Expo., 2012. ECCE 2012. IEEE, pp. 2439-2446, Sept., 2012.
[25] A.C. Kyritsis, N.P. Papanicolaou and E.C. Tatakis, “A novel Parallel Active Filter for Current Pulsation Smoothing on single stage grid-connected AC-PV modules,” 2007 European Conf. on Power Electronics and Application., pp 1 – 10, Sept., 2007.
[26]O. Lopez, F. D. Freijedo, A. G. Yepes, P. Fernandez-Comesaa, J. Malvar, R. Teodorescu, and J. Doval-Gandoy, "Eliminating Ground Current in a Transformerless Photovoltaic Application," IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 140-147, Mar., 2010.
[27]S. V. Araujo, P. Zacharias, and R. Mallwitz, “Highly Efficient Single-Phase Transformerless Inverters for Grid-Connected Photovoltaic Systems,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3118-3128, Sep., 2010.
[28]蔡進譯, “超高效率太陽能電池-從愛因斯坦的光電效應談起,” 物理雙月刊, vol. 27, no. 5, 2005.
[29]G. Vachtsevanos and K. Kalaitzakis, “A Hybrid Photovoltaic Simulator for Utility Interactive Studies,” IEEE Trans. Energy Convers., vol. 2, no. 2, pp. 227-231, Jun., 1987.
[30]S. Maniktala, Switching Power Supplies A to Z: Newnes, 2006.
[31]經濟部能源局, “再生能源發展條例,” 2009.
[32]台灣電力股份有限公司, “再生能源發電系統併聯技術要點,” 2009.
[33]台灣電力股份有限公司, “電力系統諧波管制暫行標準,” 1993.
[34]IEEE recommended practives and requirements for harmonic control electrical power systems, IEEE Std. 519-1992, 1992.
[35]“atan2,” Wikipedia. [Online]. Available: http://en.wikipedia.org/wiki/Atan2. [Accessed: 28-Jul-2011]
[36]Fangrui Liu, Shanxu Duan, Fei Liu, Bangyin Liu, and Yong Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2622–2628, Jul., 2008.
[37]P. T. Krein, R. S. Balog and M. Mirjafari, ”Minimum Energy and Capacitance Requirements for Single-Phase Inverters and Rectifiers Using a Ripple Port,” IEEE Trans. Ind. Electron., vol.27 , no.11 , pp 4690 – 4698, Nov., 2012.
[38] 吳啟耀, 曹哲瑋 “再生能源單相電壓型換流器的輸出功率脈動補償,”中華民國第34屆電力工程研討會, 12月2013。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top