(34.204.191.31) 您好!臺灣時間:2019/10/20 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:陳佳惠
研究生(外文):Jia-HueiChen
論文名稱:兩種近緣食蟲性蝙蝠的食性比較與其生態形值的關聯
論文名稱(外文):Comparative food habits of two closely-related insectivorous bats and their eco-morphological correlates
指導教授:李亞夫
指導教授(外文):Ya-Fu Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:46
中文關鍵詞:展弦比蝙蝠生態形值食性臺灣葉鼻蝠琉球小葉鼻蝠食蟲動物翼承載量
外文關鍵詞:aspect ratiobatseco-morphologyfood habitHipposideros terasensisHipposideros turpisinsectivoreswing loading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
動物利用食物資源的機會與限制常受限於自身的生態形值 (eco-morphology) 進而影響資源利用 (resource use),因此瞭解動物的資源利用模式 (pattern),有助於推測物種的生態習性及其與動物形態的關係。 親緣關係相近的物種擁有相似的生態形值,因此為潛在競爭資源的物種。 然而,許多研究顯示近緣物種間存在資源利用差異,因關鍵生態形值上的細微差異會造成近緣物種間探索環境與資源之行為與效率的差異。
對蝙蝠而言,翅膀形值 (wing morphology) 和超音波結構 (echolocation structure) 會影響蝙蝠利用的棲地類型,間接影響蝙蝠覓食遭遇的昆蟲種類。 與體型呈正相關的頭顱骨大小 (skull size) 以及牙齒構造 (tooth structure) 則會影響蝙蝠捕食的獵物大小及硬度。 本研究欲測試假說:在同屬物種裡,關鍵生態形值的細微差異會造成食性 (food habits) 的不同。 本研究在蝙蝠棲息的洞穴中定期收集臺灣葉鼻蝠 (Formosan Leaf-nosed Bat, Hipposideros terasensis Kishida, 1924) 與琉球小葉鼻蝠 (Lesser Leaf-nosed Bat, H. turpis Bangs, 1901) 的排遺,再以顯微鏡辨識排遺內食物碎片,並分析其組成。 這兩種蝙蝠在體型、頭顱骨大小、及超音波頻率上皆有差異。 臺灣葉鼻蝠的超音波頻率範圍在65~75千赫茲 (kHz) 而琉球小葉鼻蝠的超音波頻率範圍為77~84千赫茲。 本研究亦測量琉球小葉鼻蝠的翅膀形值參數 (wing-shape parameters),包括翼承載量 (wing loading)、展弦比 (aspect ratio)、及翼尖形狀指數 (wingtip shape index),並比較其與臺灣葉鼻蝠間的翅膀形值差異。
食性結果顯示,臺灣葉鼻蝠取食至少9個昆蟲目,琉球小葉鼻蝠的食性則包含12目的節肢動物,其中蜘蛛目 (Araneae)、蜻蛉目 (Odonata)、與毛翅目 (Trichoptera) 僅在琉球小葉鼻蝠的排遺中發現。 兩種蝙蝠皆以鞘翅目 (Coleoptera) 為主食,佔了食性中超過20%的相對出現頻度 (relative frequency of occurrence) 以及大約40%的體積百分比 (volume percentage)。 其餘的獵物種類則在兩種蝙蝠的食性間分別佔有不同的比例。 半翅目 (Hemiptera) 和膜翅目 (Hymenoptera) 在臺灣葉鼻蝠的食性中佔有53.8%的相對出現頻度及50.8%的體積百分比。 在琉球小葉鼻蝠的食性中,相對出現頻度較高的類別包含直翅目 (Orthoptera)、半翅目、及蜚蠊目 (Blattodea),但直翅目與鱗翅目 (Lepidoptera) 佔有較高比例的體積百分比。 在臺灣葉鼻蝠的排遺中辨識出21種目以下,大多為科 (family) 的獵物類群 (prey taxon);而琉球小葉鼻蝠的排遺中僅辨別出13種。 在對半翅目的取食中,臺灣葉鼻蝠捕食蟬 (Cicadidae) 的頻度及體積百分比皆顯著高於琉球小葉鼻蝠對蟬的取食。 整體而言,臺灣葉鼻蝠的食性較均勻 (even) 而且異質性 (heterogeneity) 較高,所以臺灣葉鼻蝠的食性寬度 (dietary breadth) (3.21) 較高於琉球小葉鼻蝠的食性寬度 (2.98),而兩者僅有0.67的食性重疊 (dietary overlap)。
除了翼尖形狀指數外,臺灣葉鼻蝠大部分的翅膀形值參數皆大於琉球小葉鼻蝠的翅膀形值參數。 擁有較大翼承載量及較高展弦比的臺灣葉鼻蝠,顯示其有相對較快的飛行速度與相對較差的飛行靈敏度 (maneuverability)。 而琉球小葉鼻蝠的翅膀形值參數顯示其具有相對較佳的飛行靈敏度,加上較高頻率的超音波可以容忍較複雜的環境 (cluttered environment),因此琉球小葉鼻蝠可以在較為複雜的棲地中覓食。 依據蝙蝠的飛行能力與對複雜環境的容忍度,將獵物根據其一般飛行能力分類後分析,擁有較大翼承載量及較高展弦比的臺灣葉鼻蝠取食較高比例飛行速度較快的昆蟲,如膜翅目。 體型較大的臺灣葉鼻蝠擁有較大的頭顱骨及較強的咬合力,其推估之取食昆蟲硬度指數 (3.75) 略高於琉球小葉鼻蝠 (3.67)。
臺灣葉鼻蝠及琉球小葉鼻蝠在食性各方面皆有差異,而食性分析結果符合生態形值,包括翅膀形值參數、體型大小、及超音波結構等因子對蝙蝠食性的預期。 雖然兩種葉鼻蝠的食性多樣性比較並不符合預期,但臺灣葉鼻蝠取食昆蟲目的數量較少,可能其較為均勻的取食各昆蟲目而有較高的異質性。 雖然本研究沒有測量食物量而不能排除兩實驗地區間環境差異對蝙蝠食性的影響,但前人的研究結果顯示:臺灣葉鼻蝠在各地區的食性組成相似,表示地區間食性的差異並不大。 生態形值會限制動物的行為並影響其資源利用,因此生態形值可反映動物的生態需求並作為預測動物資源利用模式的指標。

Ecological morphology presents constraints and opportunities to how animals explore resources by different mechanisms, and in turn may affect the resource use patterns of animals. Closely-related species with similar eco-morphological traits are presumably subjected to similar limitations, and thus are expected to explore similar resources. On the other hand, closely-related species may still display substantially different resource use, because slight differences in key eco-morphological traits may influence their performance and efficiency in exploring environments and resources.
For microchiropterans, wing-shape parameters and echolocation structure often limit the type of habitats they are capable of exploring, which will affect the type of prey encountered. Body size, skull size, and tooth structure may further constrain size or hardness of prey consumed by bats. This study tested the hypothesis that small differences in crucial eco-morphological traits between congeneric species may contribute to different food habits. I conducted dietary analyses on fecal samples of two closely-related insectivorous bats, Hipposideros terasensis Kishida, 1924 and H. turpis Bangs, 1901, which were collected in their summer habitats. These two species differ in body size, skull size, and echolocation call frequency. I also measured related wing parameters, including span, area, and loading of wing, aspect ratio, tip length and area ratios of wing, and wingtip shape index, for these two species to compare their wing morphology.
The diet of H. terasensis comprised of 9 insect orders, and that of H. turpis additionally included Araneae, Odonata, and Trichoptera and contained a total of 12 orders of arthropods. Both species fed primarily on Coleoptera that accounted for more than 20% in frequency of occurrence and about 40% in volume percentage, while the rest prey orders accounted for different proportions in their respective diets. Hemiptera and Hymenoptera accounted for 53.8% of the total frequency of occurrence and contributed to 50.8% of the volume in the diets of H. terasensis. In contrast, Orthoptera, Hemiptera, and Blattodea were more prevalent in the diet of H. turpis, but Orthoptera and Lepidoptera were more abundant in volumes. Below the level of order, I found 21 and 13 prey taxon, mostly families, in the diets of H. terasensis and H. turpis, respectively. Within hemipterans, H. terasensis consumed higher proportions of cicadas than H. turpis. Overall, H. terasensis displayed a more even and thus a more heterogeneous diet than that of H. turpis, with a medium dietary overlap between the two species at 0.67, based on Horn’s index of similarity.
Most wing parameters measured were higher in H. terasensis than those of H. turpis. A higher wing loading and aspect ratio indicate a faster but less maneuverable flight for H. terasensis. In contrast, the flight of H. turpis is expected to be more maneuverable and adapted to near vegetation and the ground. In addition, H. turpis with higher call frequency would be more tolerant to cluttered environments. Incorporating the general flight potentials of insects, dietary results showed that H. terasensis, with higher wing loading and aspect ratio, consumed a higher proportion of faster-flying insects, such as Hymenoptera. The larger body and skull size of H. terasensis suggest a more powerful bite force, and the estimated hardness index of prey eaten by H. terasensis (3.75) was slightly higher than that of H. turpis (3.67).
The food habits differed between H. terasensis and H. turpis in several aspects, and various factors might have contributed to these differences. The dietary results were consistent with the predictions from eco-morphological traits, including body size, wing parameters, and echolocation. Since H. terasensis ate more evenly among each insect order, it ate less number of insect orders but had a more heterogeneity diet. This study did not measure food availability on site, thus can’t rule out the possibility of dietary differences affected by prey availability. The dietary compositions of H. terasensis among sites across Taiwan, however, indicate little dietary variation in space and substantiate our conclusions. Eco-morphological traits constrain animals to explore resources and to a certain extent that have contributed to the different patterns of resource use, thus eco-morphological traits can be a good indicator for resource use patterns of animals with caution.

摘要 i
Abstract iii
致謝 vi
Table of contents vii
List of tables ix
List of figures x
Introduction 1
Literature review 2
The food habits of insectivorous bats 2
Ecological morphology 4
Hypotheses and predictions 9
Materials and Methods 11
Study animals 11
Study sites 13
Fecal sampling 14
Dietary analyses 15
Wing parameter measurements 15
Statistical analyses 16
Results 19
Dietary composition 19
Wing parameters 28
Discussion 29
Body size 30
Wing morphology 30
Echolocation 33
Food availability 34
Conclusions 35
Literatures cited 36

Agosta, S. J., and D. Morton. 2003. Diet of the Big Brown Bat, Eptesicus fuscus, from Pennsylvania and western Maryland. Northeastern Naturalist 10:89-104.
Aguirre, L. F., A. Herrel, R. van Damme, and E. Matthysen. 2002. Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proceedings: Biological Sciences 269:1271-1278.
Aldridge, H. D. J. N. 1986. Manoeuvrability and ecological segregation in the Little Brown (Myotis lucifugus) and Yuma (M. yumanensis) Bats (Chiroptera: Vespertilionidae). Canadian Journal of Zoology 64:1878-1882.
Aldridge, H. D. J. N. 1987. Turning flight of bats. Journal of Experimental Biology 128:419-425.
Aldridge, H. D. J. N., and I. L. Rautenbach. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology 56:763-778.
Almenar, D., J. Aihartza, U. Goiti, E. Salsamendi, and I. Garin. 2013. Hierarchical patch choice by an insectivorous bat through prey availability components. Behavioral Ecology and Sociobiology 67:311-320.
Arlettaz, R. 1996. Feeding behaviour and foraging strategy of free-living Mouse-eared Bats, Myotis myotis and Myotis blythii. Animal Behaviour 51:1-11.
Arlettaz, R., N. Perrin, and J. Hausser. 1997. Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology 66:897-911.
Arlettaz, R. 1999. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology 68:460-471.
Arlettaz, R., S. Godat, and H. Meyer. 2000. Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of Lesser Horseshoe Bats (Rhinolophus hipposideros). Biological Conservation 93:55-60.
Arnold, S. J. 1983. Morphology, performance and fitness. American Zoologist 23:347-361.
Bangs, O. 1901. Notes on a small collection of mammals from the Liu Kiu Islands. The American Naturalist 35:561-562.
Bauerová, Z. 1986. Contribution to the trophic bionomics of Myotis emarginatus. Folia Zoologica 35:305-310.
Bogdanowicz, W., M. B. Fenton, and K. Daleszczyk. 1999. The relationships between echolocation calls, morphology and diet in insectivorous bats. Journal of Zoology 247:381-393.
Borissenko, A. V., and S. V. Kruskop. 2003. Bats of Vietnam and Adjacent Territories: An Identification Manual. Joint Russian-Vietnamese Science and Technological Centre and Zoological Museum of Moscow, M. V. Lomonsov State University, Moscow, Russia.
Bowie, R. C. K., D. S. Jacobs, and P. J. Taylor. 1999. Resource use by two morphologically similar insectivorous bats (Nycteris thebaica and Hipposideros caffer). South African Journal of Zoology 34:27-33.
Brigham, R. M., R. L. Francis, and S. Hamdorf. 1997. Microhabitat use by two species of Nyctophilus bats: a test of ecomorphology theory. Australian Journal of Zoology 45:553-560.
Buchler, E. R. 1976. Prey selection by Myotis lucifugus (Chiroptera: Vespertilionidae). The American Naturalist 110:619-628.
Chen, S.-F. 1995. Activity patterns and food habits of sympatric Formosan Leaf-nosed Bat (Hipposideros armiger) and Formosan Horseshoe Bat (Rhinolophus monoceros) in Yangmingshan area. M.S. Thesis. National Taiwan University, Taipei, Taiwan.
Cheng, H.-C., Y.-P. Fang, and C.-H. Chou. 2010. A Photographic Guide to the Bats of Taiwan. Endemic Species Research Institute, C. O. A., Nantou, Taiwan.
Chiu, C. 2000. Dietary variation in Formosan Leaf-nosed Bat (Hipposideros terasensis). B.S. Thesis. National Taiwan University, Taipei, Taiwan.
Corbet, G. B., and J. E. Hill. 1992. The Mammals of the Indomalayan Region: A Systematic Review. Oxford University Press, New York, USA.
Crome, F. H. J., and G. C. Richards. 1988. Bats and gaps: microchiropteran community structure in a Queensland rain forest. Ecology 69:1960-1969.
Dunning, D. C., L. Acharya, C. B. Merriman, and L. D. Ferro. 1992. Interactions between bats and arctiid moths. Canadian Journal of Zoology 70:2218-2223.
Dunning, D. C., and M. Krüger. 1996. Predation upon moths by free-foraging Hipposideros caffer. Journal of Mammalogy 77:708-715.
Eckrich, M., and G. Neuweiler. 1988. Food habits of the sympatric insectivorous bats Rhinolophus rouxi and Hipposideros lankadiva from Sri Lanka. Journal of Zoology 215:729-737.
Farney, J., and E. D. Fleharty. 1969. Aspect ratio, loading, wing span, and membrane areas of bats. Journal of Mammalogy 50:362-367.
Fenton, M. B., and G. K. Morris. 1976. Opportunistic feeding by desert bats (Myotis spp.). Canadian Journal of Zoology 54:526-530.
Fenton, M. B., and D. W. Thomas. 1980. Dry-season overlap in activity patterns, habitat use, and prey selection by sympatric African insectivorous bats. Biotropica 12:81-90.
Fenton, M. B. 1990. The foraging behavior and ecology of animal-eating bats. Canadian Journal of Zoology 68:411-422.
Fenton, M. B., and W. Bogdanowicz. 2002. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Canadian Journal of Zoology 80:1004-1013.
Findley, J. S., and H. Black. 1983. Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology 64:625-630.
Freeman, P. W. 1979. Specialized insectivory: beetle-eating and moth-eating molossid bats. Journal of Mammalogy 60:467-479.
Freeman, P. W. 1981. Correspondence of food habits and morphology in insectivorous bats. Journal of Mammalogy 62:166-173.
Fukui, D., K. Okazaki, and K. Maeda. 2009. Diet of three sympatric insectivorous bat species on Ishigaki Island, Japan. Endangered Species Research 8:117-128.
Fukui, D., and N. Agetsuma. 2010. Seasonal change in the diet composition of the Asian Parti-coloured Bat Vespertilio sinensis. Mammal Study 35:227-233.
Fullard, J. H., and D. W. Thomas. 1981. Detection of certain African, insectivorous bats by sympatric, tympanate moths. Journal of Comparative Physiology 143:363-368.
Fullard, J. H. 1987. Sensory Ecology and Neuroethology of Moths and Bats: Interactions in a Global Perspective. Pages 244-272 in M. B. Fenton, P. A. Racey, and J. M. V. Rayner, editors. Recent Advances in the Study of Bats. Cambridge University Press, Cambridge, England.
Ho, Y.-Y., and L.-L. Lee. 2003. Roost selection by Formosan Leaf-Nosed Bats (Hipposideros armiger terasensis). Zoological Science 20:1017-1024.
Houston, R. D., A. M. Boonman, and G. Jones. 2004. Do Echolocation Signal Parameters Restrict Bats' Choice of Prey? Pages 339-345 in J. A. Thomas, C. F. Moss, and M. Vater, editors. Echolocation in Bats and Dolphins. University of Chicago Press, Chicago, USA.
Hsu, Y.-C., P.-J. Shaner, C.-I. Chang, L. Ke, and S.-J. Kao. 2013. Trophic niche width increases with bill-size variation in a generalist passerine: a test of niche variation hypothesis. Journal of Animal Ecology. doi: 10.1111/1365-2656.12152.
Husar, S. L. 1976. Behavioral character displacement: evidence of food partitioning in insectivorous bats. Journal of Mammalogy 57:331-338.
IUCN. 2013. IUCN Red List of Threatened Species. Available at www.iucnredlist.org
J-IIBIS. 2013. Japan-Integrated Biodiversity Information System. Available at http://www.biodic.go.jp/english/J-IBIS.html
Jacobs, D. S. 2000. Community level support for the allotonic frequency hypothesis. Acta Chiropterologica 2:197-207.
Jacobs, D. S., and R. M. R. Barclay. 2009. Niche differentiation in two sympatric sibling bat species, Scotophilus dinganii and Scotophilus mhlanganii. Journal of Mammalogy 90:879-887.
Jones, G., M. Morton, P. M. Hughes, and R. M. Budden. 1993. Echolocation, flight morphology and foraging strategies of some West African hipposiderid bats. Journal of Zoology 230:385-400.
Krebs, C. J. 1999. Ecological Methodology. Addison-Welsey Educational Publishers, Inc., USA.
Lee, Y.-F., and G. F. McCracken. 2002. Foraging activity and food resource use of Brazilian Free-tailed Bats, Tadarida brasiliensis (Molossidae). Ecoscience 9:306-313.
Lee, Y.-F., and G. F. McCracken. 2004. Flight activity and food habits of three species of Myotis bats (Chiroptera: Vespertilionidae) in sympatry. Zoological Studies 43:589-597.
Lee, Y.-F., and L. L. Severinghaus. 2004. Sexual and seasonal differences in the diet of Lanyu Scops owls based on fecal analysis. Journal of Wildlife Management 68:299-306.
Lee, Y.-F., and G. F. McCracken. 2005. Dietary variation of Brazilian Free-tailed Bats links to migratory populations of pest insects. Journal of Mammalogy 86:67-76.
Lee, Y.-F., Y.-M. Kuo, Y.-H. Lin, W.-C. Chu, S.-H. Wu, H.-H. Wang, and J.-T. Chao. 2008. Spatiotemporal variation in avian diversity and the short-term effects of typhoons in tropical reef-karst forests on Taiwan. Zoological Science 25:593-603.
Lee, Y.-F., T. Takaso, T.-Y. Chiang, Y.-M. Kuo, N. Nakanishi, H.-Y. Tzeng, and K. Yasuda. 2009. Variation in the nocturnal foraging distribution of and resource use by endangered Ryukyu Flying Foxes (Pteropus dasymallus) on Iriomotejima Island, Japan. Contributions to Zoology 78:51-64.
Lee, Y.-F., Y.-M. Kuo, W.-C. Chu, Y.-H. Lin, H.-Y. Chang, and W.-M. Chen. 2012. Ecomorphology, differentiated habitat use, and nocturnal activities of Rhinolophus and Hipposideros species in East Asian tropical forests. Zoology 115:22-29.
Lin, L.-K., L.-L. Lee, and H.-C. Cheng. 2004. Bats of Taiwan. 2nd edition. National Museum of Natural Science, Taichung, Taiwan.
Lu, Y.-C. 2013. Community composition and food resource use of chiropteran assemblages in mid-elevation forests of central Taiwan. M.S. Thesis. National Cheng Kung university, Tainan, Taiwan.
Maeda, K., and Y. Akazawa. 1999. An attempt to estimate the population size of passing bats. Mammalian Science 39:221-228.
Maeda, K., and M. Matsumoto. 2004. Population changes of the Bang's Leaf-nosed Bats (Hipposideros turpis Bangs, 1901) for ten years in Otomi-Daiichi Cave, Iriomote Island, Nansei Archipelago. Biological Magazine Okinawa 42:57-60.
Magurran, A. E. 2004. Measuring Biological Diversity. Blackwell scientific, Malden.
Mancina, C. A., L. García-Rivera, and B. W. Miller. 2012. Wing morphology, echolocation, and resource partitioning in syntopic Cuban mormoopid bats. Journal of Mammalogy 93:1308-1317.
McAney, C., C. Shiel, C. Sullivan, and J. Fairley. 1991. The Analysis of Bat Droppings. Mammal Society, London, UK.
McCracken, G. F., E. H. Gillam, J. K. Westbrook, Y.-F. Lee, M. L. Jensen, and B. B. Balsley. 2008. Brazilian Free-tailed Bats (Tadarida brasiliensis : Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integrative and Comparative Biology 48:107-118.
McKenzie, N. L., and J. K. Rolfe. 1986. Structure of bat guilds in the Kimberley mangroves, Australia. Journal of Animal Ecology 55:401-420.
McKenzie, N. L., A. C. Gunnell, M. Yani, and M. R. Williams. 1995. Correspondence between flight morphology and foraging ecology in some palaeotropical bats. Australian Journal of Zoology 43:241-257.
Moosman, P. R., H. H. Thomas, and J. P. Veilleux. 2012. Diet of the widespread insectivorous bats Eptesicus fuscus and Myotis lucifugus relative to climate and richness of bat communities. Journal of Mammalogy 93:491-496.
Nicholls, B., and P. A. Racey. 2006. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography 29:697-708.
Norberg, U. M. 1981. Allometry of bat wings and legs and comparison with bird wings. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 292:359-398.
Norberg, U. M., and J. M. V. Rayner. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 316:335-427.
Norberg, U. M. 1994. Wing Design, Flight Performance, and Habitat Use in Bats. Pages 205-239 in P. C. Wainwright and S. M. Reilly, editors. Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, USA.
Norberg, U. M. L., and R. Å. Norberg. 2012. Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size. The Journal of Experimental Biology 215:711-722.
Ohdachi, S. D., Y. Ishibashi, M. A. Iwasa, and T. Saitoh. 2009. The Wild Mammals of Japan. Mammalogical Society of Japan, Sapporo, Hokkaido, Japan.
Painter, M. L., C. L. Chambers, M. Siders, R. R. Doucett, J. J. O. Whitaker, and D. L. Phillips. 2009. Diet of Spotted Bats (Euderma maculatum) in Arizona as indicated by fecal analysis and stable isotopes. Canadian Journal of Zoology 87:865-875.
Panyutina, A. A., A. Y. Puzachenko, and I. B. Soldatova. 2011. Morphological diversity of wing structure in rhinolophoid bats (Chiroptera, Rhinolophoidea). Biology Bulletin 38:679-694.
Pavey, C. R., and C. J. Burwell. 1997. The diet of the Diadem Leaf-nosed Bat Hipposideros diadema: confirmation of a morphologically-based prediction of carnivory. Journal of Zoology 243:295-303.
Pavey, C. R., and C. J. Burwell. 1998. Bat predation on eared moths: a test of the allotonic frequency hypothesis. Oikos 81:143-151.
Pennycuick, C. J. 1975. Mechanics of Flight. Pages 1-76 in D. S. Farner and J. R. King, editors. Avian Biology. Academic Press, Inc., New York, USA.
Pyke, G. H., H. R. Pulliam, and E. L. Charnov. 1977. Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology 52:137-154.
Rakotoarivelo, A. A., N. Ranaivoson, O. R. Ramilijaona, A. F. Kofoky, P. A. Racey, and R. K. B. Jenkins. 2007. Seasonal food habits of five sympatric forest mcrochiropterans in Western Madagascar. Journal of Mammalogy 88:959-966.
Rakotoarivelo, A. A., M. Ralisata, O. R. Ravoahangimalala, M. R. Rakotomalala, P. A. Racey, and R. K. B. Jenkins. 2009. The food habits of a Malagasy Giant: Hipposideros commersoni (E. Geoffroy, 1813). African Journal of Ecology 47:283-288.
Reilly, S. M., and P. C. Wainwright. 1994. Conclusion: Ecological Morphology and the Power of Integration. Pages 339-354 in P. C. Wainwright and S. M. Reilly, editors. Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, USA.
Ricklefs, R. E., and D. B. Miles. 1994. Ecological and Evolutionary Inferences from Morphology: An Ecological Perspective. Pages 13-41 in P. C. Wainwright and S. M. Reilly, editors. Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, USA.
Ross, A. 1967. Ecological aspects of food habits of insectivorous bats. Western Foundation of Vertebrate Zoology 1:205-263.
Rydell, J., A. Entwistle, and P. A. Racey. 1996. Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos 76:243-252.
Salsamendi, E., I. Garin, D. Almenar, U. Goiti, M. Napal, and J. Aihartza. 2008. Diet and prey selection in Mehelyi's Horseshoe Bat Rhinolophus mehelyi (Chiroptera, Rhinolophidae) in the south-western Iberian Peninsula. Acta Chiropterologica 10:279-286.
Salsamendi, E., I. Garin, I. Arostegui, U. Goiti, and J. Aihartza. 2012. What mechanism of niche segregation allows the coexistence of sympatric sibling rhinolophid bats? Frontiers in Zoology 9:30.
Santana, S. E., E. R. Dumont, and J. L. Davis. 2010. Mechanics of bite force production and its relationship to diet in bats. Functional Ecology 24:776-784.
Santana, S. E., S. Strait, and E. R. Dumont. 2011. The better to eat you with: functional correlates of tooth structure in bats. Functional Ecology 25:839-847.
Saunders, M. B., and R. M. R. Barclay. 1992. Ecomorphology of insectivorous bats: a test of predictions using two morphologically similar species. Ecology 73:1335-1345.
Schnitzler, H.-U., and E. K. V. Kalko. 2001. Echolocation by insect-eating bats. BioScience 51:557-569.
Schnitzler, H.-U., C. F. Moss, and A. Denzinger. 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution 18:386-394.
Schoeman, M. C., and D. S. Jacobs. 2003. Support for the allotonic frequency hypothesis in an insectivorous bat community. Oecologia 134:154-162.
Schoeman, M. C., and D. Jacobs. 2011. The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles. Oecologia 166:493-506.
Shiel, C., C. McAney, C. Sullivan, and J. Fairley. 1997. Identification of Arthopod Fragments in Bat Droppings. Mammal Society, London, UK.
Siemers, B. M., and H.-U. Schnitzler. 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657-661.
Siemers, B. M., and S. M. Swift. 2006. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera : Vespertilionidae). Behavioral Ecology and Sociobiology 59:373-380.
Simmons, N. B. 2005. Order Chiroptera. Pages 312-529 in D. E. Wilson and D. Reeder, M., editors. Mammal Species of the World: A Taxonmic and Geographic Reference. Johns Hopkins University Press, Baltimore, Maryland, USA.
Stephens, D. W., and J. R. Krebs. 1986. Foraging Theory. Princeton University Press, USA.
Stockwell, E. F. 2001. Morphology and flight manoeuvrability in New World Leaf-nosed Bats (Chiroptera: Phyllostomidae). Journal of Zoology 254:505-514.
Stoffberg, S., D. Jacobs, and C. Matthee. 2011. The divergence of echolocation frequency in Horseshoe Bats: moth hearing, body size or habitat? Journal of Mammalian Evolution 18:117-129.
Swartz, S. M., and J. Iriarte-Díaz. 2012. A Bird? A Plane? No, It's a Bat: An Introduction to the Biomechanics of Bat Flight. Pages 317-352 in G. F. Gunnell and N. B. Simmons, editors. Evolutionary History of Bats: Fossils, Molecules and Morphology. Cambridge University Press, New York, USA.
TESRI. 2012. Database of Taiwan Wild Animals. Available at http://www.tbn.org.tw/twd97/
Thong, V. D., S. J. Puechmaille, A. Denzinger, P. J. J. Bates, C. Dietz, G. Csorba, P. Soisook, E. C. Teeling, S. Matsumura, N. M. Furey, and H.-U. Schnitzler. 2012. Systematics of the Hipposideros turpis complex and a description of a new subspecies from Vietnam. Mammal Review 42:166-192.
Topál, G. Y. 1993. Taxonomic status of Hipposideros larvatus alongensis Bourret, 1942 and occurrence of H. turpis Bangs, 1901 in Vietnam (Mammalia: Chiroptera). Acta Zoologica Hungarica 39:267-288.
Triplehorn, C. A., and N. F. Johnson. 2005. Borror and DeLong's Introduction to the Study of Insects. 7th edition. Brooks/Cole, Cengage Learning, Belmont, California, USA.
Valdez, E. W., and M. A. Bogan. 2009. Does variation in cranial morphology of Myotis occultus (Chiroptera: Vespertilionidae) reflect a greater reliance on certain prey types? Acta Chiropterologica 11:443-450.
Wainwright, P. C. 1991. Ecomorphology: experimental functional anatomy for ecological problems. American Zoologist 31:680-693.
Wainwright, P. C. 1994. Functional Morphology as a Tool in Ecological Research. Pages 42-59 in P. C. Wainwright and S. M. Reilly, editors. Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, USA.
Wainwright, P. C., and S. M. Reilly. 1994. Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, USA.
Wainwright, P. C. 1996. Ecological explanation through functional morphology: the feeding biology of sunfishes. Ecology 77:1336-1343.
Whitaker, J. O., Jr. 1988. Food Habits Analysis of Insectivorous Bats. Pages 171-190 in T. H. Kunz, editor. Ecology and Behavioral Methods for the Study of Bats. Smithsonian Institution Press, Washington, DC.
Whitaker, J. O., Jr., C. Neefus, and T. H. Kunz. 1996. Dietary variation in the Mexican Free-tailed Bat (Tadarida brasiliensis mexicana). Journal of Mammalogy 77:716-724.
Whitaker, J. O., Jr., S. S. Issac, G. Marimuthu, and T. H. Kunz. 1999. Seasonal variation in the diet of the Indian Pygmy Bat, Pipistrellus mimus, in Southern India. Journal of Mammalogy 80:60-70.
Yoshiyuki, M. 1991. Taxonomic status of Hipposideros terasensis Kishida, 1924 from Taiwan (Chiroptera, Hipposideridae). Journal of the Mammalogical Society of Japan 16:27-35.
Zar, J. H. 2010. Biostatistical Analysis. Prentice Hall, Inc., New Jersey, USA.
Zubaid, A. 1988. Food habits of Hipposideros armiger (Chiroptera: Rhinolophidae) from Peninsular Malaysia. Mammalia 52:585-589.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔