跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/07 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝長虹
研究生(外文):Chang-HongXie
論文名稱:揚聲器音圈動態溫度響應
論文名稱(外文):Estimation of loudspeaker voice-coil dynamic temperature response
指導教授:陳朝光陳朝光引用關係
指導教授(外文):Chao-Kuang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:50
中文關鍵詞:揚聲器音圈熱效應功率壓縮渦流熱效應
外文關鍵詞:LoudspeakerVoice coil temperaturePower compressionEddy current heating effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
動圈揚聲器能量轉換效率低,只有5%的電能被轉換為聲能。揚聲器失效很多時候是由於音圈高溫。本文對揚聲器的電、機、聲特性和熱特性進行了闡述,分析了這些特性之間的相互影響。討論了渦流熱效應和強迫對流熱傳對音圈溫度的影響,並且採用有限元方法提出了耦合模型。
The efficiency of moving coil loudspeaker is very low. Roughly around 5% of electricity energy is transformed to acoustic energy and loudspeaker failure is mainly due to high temperature of voice coil. In this thesis, loudspeaker's electric, mechanical, acoustical and thermal behaviors have been studied, and the relationships between them have been discussed. The thesis focuses on the influence of Eddy current heating effect and convection cooling effect to the voice coil temperature. A conjugated FEM model is also raised.
1. Introduction 1
1.1. Motivation 1
1.2. Background and existing paper 1
1.3. Thesis organization 2
1.4. Structural details 3
1.5. Power compression 5
2. Electro-mechanical model 7
2.1. Gyrator 7
2.2. Voice coil part 9
2.3. Mechanical part 12
2.4. Mechanic-acoustic transducer 14
2.5. Acoustic part 15
2.6. Summary analysis 17
3. Thermal model 20
3.1. Heat source 20
3.2. Heat transfer mechanisms 22
3.3. Thermal lumped-element circuit model 23
3.4. Measurements of temperature and thermal parameters 28
3.5. Summary of linear thermal model 30
3.6. Nonlinear model 31
4. FEM Model 35
4.1. COMSOL Multiphysics 35
4.2. Model construction 35
4.3. Temperature dependent Electro-mechanical model 38
4.4. Initial and boundary conditions of thermal model 39
4.5. FEM Thermal model 40
4.6. FEM Electro-mechanical model 43
4.7. Conjugated model results 46
5. Conclusion and future work 47
References 48
Chapman, P.J., Thermal simulation of loudspeakers, Audio Engineering Society 104th Convention, Amsterdam, May 1998.
Button, D.J., Heat dissipation and power compression in loudspeakers, Journal of the Audio Engineering Society, Volume 40, Issue 1/2, pp. 32-41, 1992.
Behler, I.G.; Spatling, U.; Arimont, T., Measuring the loudspeaker's impedance during operation for the evaluation of the voice coil temperature, Audio Engineering Society 98th Convention, Paris, February 1995.
Behler, G.K.; Bernhard, A., Measuring method to derive the lumped elements of the loudspeaker thermal equivalent circuit, Audio Engineering Society 104th Convention, Amsterdam, May 1998.
Buck, M., Measuring loudspeaker voicecoil temperature, Audio Engineering Society 106th Convention, Munich Germany, May 1999.
Blasizzo, F., A new thermal model for loudspeakers, Journal of the Audio Engineering Society, Volume 52, Issue 1/2, pp. 43-56, 2004.
Dodd, M., The application of FEM to the analysis of loudspeaker motor thermal behavior, Audio Engineering Society 112th Convention, Munich Germany, May 2002.
Henricksen, C.A., Heat transfer mechanisms in loudspeaker: analysis, measurement and design, Audio Engineering Society 80th Convention, Montreux Switzerland, March 1986.
Ionescu, C.; Codreanu, N.D.; Golumbeanu, V.; Svasta, P. ,Thermal simulation of a high power loudspeaker, 28th Int. Spring seminar on electronics technology, ,May 2005.
Leach, W.M., Loudspeaker voice-coil inductance losses: circuit models, parameter estimation, and effect on frequency response, Journal of the Audio Engineering Society, Volume 50, Issue 6, pp. 442-450, June 2002.
Klippel, W., Nonlinear modeling of the heat transfer in loudspeaker, Journal of the Audio Engineering Society, Volume 52, Issue 1/2, pp. 3-25, 2004.
Rife, D.D.; Vanderkooy, J., Transfer function measurement with maximum length sequences, Journal of the Audio Engineering Society, Volume 37, Issue 6, pp. 419-444, 1989.
Small, R.H., Closed box loudspeaker systems Part I: Analysis, Journal of the Audio Engineering Society, Volume 20, Issue 10, pp. 798-808, 1972.
Simonson, J.R., Engineering heat transfer, 2nd edition, MacMillan, 1988.
Shen, Y.; Wu, N.; Xu, X., A study on lumped elements model and thermal effects of eddy currents in loudspeakers, Audio Engineering Society 119th Convention, New York, October 2005.
Vanderkooy, J., A model of loudspeaker driver impedance incorporating eddy currents in the pole structure, Journal of the Audio Engineering Society, Volume 37, Issue 3, pp. 119-128, 1989.
Wright, J.R., An empirical model for loudspeaker motor impedance, Journal of the Audio Engineering Society, Volume 38, Issue 10, pp. 749-754, 1990.
Zuccatti, C., Thermal parameters and power ratings of loudspeakers, Journal of the Audio Engineering Society, Volume 38, Issue 1/2, pp. 34-39, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top