跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/06 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林漢文
研究生(外文):Lin, Han-Wen
論文名稱:以控制銅錫介金屬化合物的晶體方向與形貌改善微電子封裝可靠度之研究
論文名稱(外文):Improvement of Reliability Issues of Microelectronic Packaging by Controlling the Orientation and Morphology of Cu-Sn Intermetallic Compounds
指導教授:陳智陳智引用關係
指導教授(外文):Chen, Chih
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:87
中文關鍵詞:奈米雙晶銅介金屬化合物微銲錫凸塊電子封裝錫晶鬚
外文關鍵詞:nano-twinned Cuintermetallicsmicrobumpelectronic packagingtin whisker
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為兩部分。第一部分,我們以具有<111>優選方向的奈米雙晶銅控制成長於其上的介金屬化合物η-Cu6Sn5。在三維積體電路每個晶片上,皆有數以萬計的微銲錫凸塊,因此,如何控制每一個微銲錫凸塊的性質是一個很重要的議題。在本實驗中,我們可以藉由<111>奈米雙晶銅墊層控制生長於其上的η-Cu6Sn5。以直流電鍍出大量的奈米雙晶銅墊層以及覆蓋於其上的錫2.3銀,將試片以260 oC迴銲1分鐘後,在銅墊層上成長η-Cu6Sn5。此時,η-Cu6Sn5在<0001>方向上展現出高度的優選性質。當迴銲時間延長時,其優選織構轉變為{21 ̅1 ̅3}。本研究的成果展現出對於η-Cu6Sn5生長方向的控制。以控制銅墊層的微結構,控制生成的η-Cu6Sn5晶體方向,進而控制整顆微銲錫凸塊的性質。
第二部分,則藉由生成均勻厚度的介金屬阻障層,抑制錫晶鬚的生成。自從1940年代以來,錫晶鬚一直都是一個可靠度的議題。經過數十年的研究,銅原子擴散進入錫金屬層且生成Cu6Sn5被視為是成長錫晶鬚的驅動力。在此部分,我們以一個全新的方式抑制錫晶鬚生成。以限制參與反應的錫體積方式,在260 oC迴銲2分鐘後,生成一層包含Cu6Sn5與Cu3Sn兩種介金屬化合物的均勻的雙層結構,此一均勻的介金屬層將作為阻障層阻擋銅原子擴散。在沒有經過任何處理的試片,僅需1至2個禮拜,銅原子就可以從晶界擴散進入錫薄膜,導致錫晶鬚在金屬導線上生成。相較之下,有介金屬阻障層的金屬導線經過7個月後仍然沒有任何錫晶鬚生成。觀察這兩種試片的橫截面,發現在沒有阻障層的試片內,Cu6Sn5的成長較不均勻。因為銅原子在Cu6Sn5與Cu3Sn的擴散係數值比在錫中小了7至8個數量級。因此以這層銅錫原生的介金屬化合物層作為阻障層,將可以有效地限制銅原子的擴散,而抑制錫晶鬚的生成。

This dissertation contains two parts. In the first part, we control the formation of η-Cu6Sn5 by adopting <111> oriented and nanotwinned copper pads. In 3D IC packaging, there are tens of thousands of microbumps in one single chip. Therefore, how to control the properties of the microbumps becomes an important issue. We report here an experimental approach for controlling the microstructure of η-Cu6Sn5 intermetallic compound in microbumps by using <111> oriented and nanotwinned Cu pads as the under-bump-metallization (UBM). By electroplating arrays of large numbers of <111> oriented and nanotwinned Cu pads and by electroplating the Sn2.3Ag solder on the pads, we form η-Cu6Sn5 in the reflow at 260 oC for 1 min. The η-Cu6Sn5 showed a highly preferential growth along the <0001> direction. As reflow time is extended, the preferred texture of η-Cu6Sn5 changed to {21 ̅1 ̅3}. These results indicate that we can control the uniform microstructure of η-Cu6Sn5 IMCs by controlling the microstructure of the Cu under-bump-metallization.
In the second part, we attempt to inhibit the formation of tin whiskers by manufacturing a uniform layer of IMCs between solder and copper trances. Whiskers have been one of the most persistent reliability issues in packaging industry since it was discovered in 1940s. After decades of research, the diffusion of Cu atoms into tin layers is considered as one of the driving force for whisker formation. In this study, to inhibit the formation of whiskers, a novel method to hinder the diffusion of copper atoms in Cu-Sn couple was introduced. A uniform Cu6Sn5/Cu3Sn of intermetallics was formed in only two minutes of reflowing with limited volume of tin. The uniform intermetallic layers between copper and tin were served as a barrier layer. In as-electroplated samples without this uniform layer, whiskers were prone to grow on the surface of tin in one to two weeks at room temperature storage. In contrast, the samples with the uniform intermetallic layers between copper and tin were whisker-free even after 7 months of storage. The cross-sectional areas of both conditions were observed. It was found that a fast growth of Cu6Sn5 along grain boundaries of tin occurred in samples without intermetallic layers. The diffusivity of copper in Cu6Sn5, Cu3Sn, and tin has been investigated in previous studies. It is reported that the inter-diffusivities of copper in Cu6Sn5 and Cu3Sn are 7-8 orders smaller in magnitude than that in Sn. Therefore, this IMC barrier layer can effectively block the flux of copper atoms, and eventually inhibit the formation of Sn whiskers.

第一章. 研究動機 1
第二章. 文獻回顧 6
2-1 電子背向繞射儀簡介 6
2-1.1 電子背向繞射儀的發展 6
2-1.2 菊池能帶的成形 10
2-1.3 自動化背向電子繞射儀系統 12
2-1.4 電腦化的菊池圖形求解過程 14
2-2 奈米雙晶銅簡介 16
2-3 介金屬化合物 19
2-3.1 介金屬化合物的晶體結構與穩定相 19
2-3.2 Cu6Sn5與銅的優選生長(preferential growth)關係 22
2-4 錫晶鬚 24
2-4.1 錫晶鬚簡介 24
2-4.2 錫晶鬚成長之驅動力 26
第三章. 實驗流程與方法 29
3-1 製備具<111>優選方向之奈米雙晶銅墊層(Cu pads) 29
3-2 低高度(low bump height)銲錫凸塊試片製備與觀察 32
3-2.1 低高度銲錫試片製備 32
3-2.2 試片觀察 32
3-3 均勻厚度的介金屬化合物層形成 36
第四章. 結果與討論 39
4-1 以具<111>方向之奈米雙晶銅控制η-Cu6Sn5之微結構 39
4-1.1 <111>方向之奈米雙晶銅墊層 39
4-1.2 在單邊銲錫接點內的優選成長現象 42
4-1.3 迴銲時間對η-Cu6Sn5晶體方向之關係 45
4-1.4 在銲錫接點內的介金屬化合物優選方向 48
4-2 影響η-Cu6Sn5 與<111>奈米雙晶銅墊層優選關係的因子探討 52
4-2.1 {0001}η-Cu6Sn5與<111>奈米雙晶銅墊層的相關性 52
4-2.2 迴銲時間對介金屬化合物晶體方向之影響 53
4-2.3 <111>銅墊層對於Cu6Sn5的晶體方向之影響 58
4-3 以均勻厚度的介金屬化合物抑制錫晶鬚生成 61
4-3.1 藉由限制銲錫體積製備均勻厚度之介金屬化合物 61
4-3.2 室溫儲存測試 65
4-3.3 介金屬化合物生成導致錫晶粒內應力探討 70
4-3.4 銅原子於介金屬化合物擴散速度之探討 73
第五章. 結論 75
5-1 以<111>奈米雙晶銅控制η-Cu6Sn5的優選生長 75
5-2 以介金屬化合物阻障層抑制錫晶鬚生長 75
參考文獻 77
個人簡歷 86
1. Introduction to Moore’s Law on Wikipedia, http://en.wikipedia.org/wiki/Moore's_law
2. http://www.electroiq.com/articles/ap/2011/03/imaps--3d-ic-toolset.html
3. S. Nishikawa, S. Kikuchi, “Diffraction of Cathode Rays by Mica”, Nature, 121, Issue 3061, pp. 1019-1020, 1928.
4. S. Nishikawa, S. Kikuchi, “Diffraction of Cathode Rays by Calcite”, Nature, 122, Issue 3080, pp. 726, 1928.
5. J.A. Venables, C.J. Harland, “Electron back-scattering patterns – A new technique for obtaining crystallographic information in the scanning electron microscope”, Philosophical Magazine, 27, Issue 5, pp. 1193–1200, 1973.
6. D. Dingley, J.W. Steeds, “Quantitative Scanning Electron Microscopy”, Academic Press, London, UK, 1974..
7. D.G. Coates, “Kikuchi-like Reflection Patterns obtained with the Scanning Electron Microscope”, Philosophical Magazine, 16, Issue 144, pp. 1179-1184, 1967.
8. D.J. Dingley, “Diffraction from sub-micron areas using electron backscattering in a scanning electron microscope”, Scanning Electron Microscopy, 11, pp. 569–575, 1984.
9. D.J. Dingley, K. Baba-Kishi, “Use of Electron Backscatter Diffraction Patterns for determination of crystal symmetry elements”, Scanning Electron Microscopy, 11, pp. 383–391, 1986.
10. D.J. Dingley, R. Mackenzie, K. Baba-Kishi, “Application of backscatter Kikuchi diffraction for phase identification and crystal orientation measurements in materials”, Microbeam Analysis. Ed. P.E. Russell, pp. 435–436, San Francisco Press, 1989.
11. D.J. Dingley, M. Longdon, J. Wienbren, J. Alderman,“On-line analysis of electron backscatter diffraction patterns, texture analysis of polysilicon”, Scanning Electron Microscopy, 11, pp. 451–456, 1987.
12. N.-H. Schmidt, N.Ø. Olesen, “Computer-aided determination of crystal-lattice orientation from electronchanneling patterns in the SEM”, Canadian Mineralogist, 27, pp. 15–22, 1989.
13. D. Juul-Jensen, N.H. Schmidt, “Automatic recognition of electron backscattering patterns”, Proceedings of Recrystallization ‘90. Ed. by T.C. Chandra, TMS, pp. 219–224, Warrendale, Pennsylvania, 1990.
14. J.C. Russ, D.S. Bright, J.C. Russ, T.M. Hare, “Application of the Hough transform to electron diffraction patterns”, J. Computer-Assisted Microscopy, 1, pp. 3–37, 1989.
15. N.C. Krieger-Lassen, K. Conradsen, D. Juul-Jensen,“Image processing procedures for analysis of electron back scattering patterns”, Scanning Microscopy, 6, pp. 115–121, 1992.
16. S.I. Wright, D.P. Field, “Analysis of multiphase materials using electron backscatter diffraction”, pp. 561– 562 in Proc. Microscopy and Microanalysis ’97. Eds. G.W. Bailey, R.V.W. Dimlich, K.B. Alexander, J.J. McCarthy, T.P. Pretlow, Springer, 1997.
17. S.I. Wright, M.M. Nowell, “Chemistry assisted phase differentiation in automated electron backscatter diffraction”, pp. 682CD in Proceedings Microscopy and Microanalysis 2002, Québec City, Québec, Canada, Cambridge University Press, 2002.
18. J.J.L. Mulders, A.P. Day, Three-dimensional texture analysis, ICOTOM 14: Textures of Materials, 495-497, pp. 237-242, 2005.
19. Oxford Instrument, http://www.ebsd.com/index.php/ebsd-analysis/types-of-ebsd-experiment/3d-ebsd
20. Carl Zeiss Microscopy, http://microscopy.zeiss.com/microscopy/en_de/products/microscope-components/upgrade/3d-ebsd.html
21. O.C. Wells, “Comparison of different models for the generation of electron backscattering patterns in the scanning electron microscope”, Scanning, 21 pp. 368-371, 1999.
22. A. Winkelmann, C. Trager-Cowan, F. Sweeney, A.P. Day, P. Parbrook, “Many-beam dynamical simulation of electron backscatter diffraction patterns”, Ultramicroscopy, 107, pp. 414-421, 2007.
23. S. Zaefferer, “On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns”, Ultramicroscopy, 107, pp. 254-266, 2007.
24. Introduction to Hough Transformation on Wikipedia, http://en.wikipedia.org/wiki/Hough_transform
25. D. Stojakovic, “Electron backscatter diffraction in materials characterization”, Processing and Application of Ceramics, 6, Issue 1, pp. 1-13, 2012.
26. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science, 304, pp. 422-426, 2004.
27. X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, “Dislocation nucleation governed softening and maximum strength in nano-twinned metals”, Nature, 464, pp. 877-880, 2010.
28. Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, K. Lu, “Tensile properties of copper with nano-scale twins”, Scripta Materialia, 52, Issue 10, 2005.
29. T. Zhu, J. Li, A. Samanta, H.G. Kim, Subra Suresh, “Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals”, Proceedings of the National Academy of Sciences of the United States of America, 104, No. 9, pp. 3031-3036, 2007
30. K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, "Observation of atomic diffusion at twin-modified grain boundaries in copper", Science, 321, pp. 1066-1069, 2008.
31. H.Y. Hsiao, C.M. Liu, H.W. Lin, T.C. Liu, C.L. Lu, Y.S. Huang, C. Chen, K. N. Tu, “Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper”, Science, 336, pp. 1007-1010, 2012.
32. G. E. R. Schulze: Metallphysik, Akademie-Verlag, Berlin 1967
33. J.D. Bernal. “The Complex Structure of the Copper–Tin Intermetallic Compounds” Nature, 122:54, 1928
34. A.K. Larsson, L. Stenberg, S. Lidin, Acta Crystallographica Section B, 50, Part 6, pp. 636-643, 1994.
35. G. Ghosh, M. Asta, “Phase Stability, Phase Transformations, and Elastic
36. Properties of Cu6Sn5: Ab Initio Calculations and Experimental Results”, Journal of Materials Research, 20, pp. 3102-3117, 2005.
37. T. Laurila, V. Vuorinen ,M. Paulasto-Kröckel, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering”, Materials Science and Engineering: R: Reports, 68, Issue 1-2, pp. 1-38, 2010.
38. T. Laurila, V. Vuorinen, J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Materials Science and Engineering: R: Reports, 49, Issue 1-2, pp. 1-60, 2005
39. K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, Q.F. Gu, “Kinetics of the η-η' transformation in Cu6Sn5”, Scripta Materialia, 65, pp. 922-925, 2011.
40. K. Nogita, “Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys”, Intermetallics, 18, Issue 1, pp. 145-149, 2010.
41. K. Nogita, T. Nishimura, “Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys”, Scripta Materialia, 59, Issue 2, pp. 191-194, 2008.
42. U. Schwingenschlögl U, C.D. Paola, K. Nogita, C.M. Gourlay, “The influence of Ni additions on the relative stability of η and η' Cu6Sn5” Applied Physics Letters, 96, Issue 6, pp. 061908-1, 2010
43. J.O. Suh, K.N. Tu, N. Tamura, “Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu” Applied Physics Letters, 91, Issue 5, pp. 051907, 2007.
44. J.O. Suh, K.N. Tu, N. Tamura, “Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu”, Journal of Applied Physics, 102, Issue 6, pp. 063511, 2007.
45. H.F. Zou, H.J. Yang, Z.F. Zhang, “Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals”, Acta Materialia, 56, Issue 11, pp. 2649-2662, 2008
46. H.F. Zou, H.J. Yang, Z.F. Zhang, “A study on the orientation relationship between the scallop-type Cu6Sn5 grains and (011) Cu substrate using electron backscattered diffraction”, Journal Of Applied Physics, 106, Issue 11, pp. 113512, 2009
47. NASA Goddard Tin Whisker Homepage, http://nepp.nasa.gov/whisker/
48. Design News 7/25/2012 http://www.designnews.com/document.asp?doc_id=247907
49. H.L. Cobb, “Cadmium Whiskers”, Monthly Rev. Am. Electroplaters Soc., 33 (28): pp. 28-30, Jan. 1946.
50. K.G. Compton, A. Mendizza, and S.M. Arnold, “Filamentary Growths on Metal Surfaces Whiskers”, Corrosion 7(10): pp. 327-334, October 1951.
51. K.N. Tu, J.C.M. Li, “Spontaneous whisker growth on lead-free solder finishes”, Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing, 409, Issue: 1-2, pp. 131-139, 2005
52. U. Lindborg, “A model for the spontaneous growth of zinc, cadmium and tin whiskers “, Acta Metallurgica, 24, Issue 2, pp. 181-6, 1976.
53. P.T. Vianco, J.A. Rejent, “Dynamic Recrystallization (DRX) as the Mechanism for Sn Whisker Development”, Journal Of Electronic Materials, 38, Issue 9, pp. 1815-1825, 2009.
54. W. Zhang, A. Egli, F. Schwager, N. Brown, “Investigation of Sn-Cu intermetallic compounds by AFM: new aspects of the role of intermetallic compounds in whisker formation“, Electronics Packaging Manufacturing, IEEE Transactions on, 28, Issue 1, 2005.
55. R.M. Fisher, L.S. Darken, K.G. Carroll,” Accelerated growth of tin whiskers”, Acta Metallurgica, 2, Issue 3, pp. 368–369, 371–373, 1954.
56. J.W. Shin, E. Chason, “Stress behavior of electroplated Sn films during thermal cycling” Journal of Materials Research, 24, pp. 1522-1528, 2009.
57. J.W. Osenbach, R.L. Shook, B.T. Vaccaro, B.D. Potteiger, A.N. Amin, K.N. Hooghan, P. Suratkar, P. Ruengsinsub, “Sn whiskers: Material, design, processing, and post-plate reflow effects and development of an overall phenomenological theory”, IEEE Transactions On Electronics Packaging Manufacturing, 28, Issue 1, pp. 36-62, 2005.
58. B.Z. Lee, D.N. Lee, “Spontaneous growth mechanism of tin whiskers”, Acta Materialia, 46, Issue 10, pp. 3701-3714, 1998.
59. W.J. Boetinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, G.R. Stafford, “Whisker and Hillock formation on Sn, Sn–Cu and Sn–Pb Electrodeposits”, Acta Materialia, 53, pp. 5033–5050, 2005.
60. K.N. Tu, “Interdiffusion and reaction in bimetallic Cu-Sn thin films”, Acta Metallurgica, 21, Issue 4, pp. 347–354, 1973.
61. K.N. Tu, “Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions”, Physical Review B, 49, pp. 2030-2034, 1994.
62. K. Suganumaa, A. Baateda, K.S. Kima, K. Hamasakia, N. Nemotob, T. Nakagawac, T. Yamadad, “Sn whisker growth during thermal cycling”, Acta Materialia, 59, Issue 19, pp. 7255-7267, 2011.
63. M. Sobiech, U. Welzel, E. J. Mittemeijer, W. Hügel, A. Seekamp, “Driving force for Sn whisker growth in the system Cu–Sn”, Applied Physics Letters, 93, pp. 011906, 2008.
64. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, K.S. Kumar, “Whisker formation in Sn and Pb–Sn coatings: Role of intermetallic growth, stress evolution, and plastic deformation processes” Applied Physics Letters, 92, pp. 171901, 2008.
65. T.C. Liu, C. Chen, K.J. Chiu, H.W. Lin, J.C. Kuo, “Novel EBSD preparation method for Cu/Sn microbumps using a focused ion beam”, Materials Characterization, 74, pp. 42-48, 2012.
66. H. K. Kim, K. N. Tu, “Kinetic analysis of the soldering reaction be- tween eutectic SnPb alloy and Cu accompanied by ripening,” Physical Review B, 53, pp. 16027–16034, 1996.
67. A. M. Gusak, K. N. Tu, “Kinetic theory of flux-driven ripening,” Physical Review B, 66, pp. 115403-1 to -14, 2002.
68. K. N. Tu, A. M. Gusak, and M. Li, “Physics and materials challenges for Pb-free solders,” Journal of Applied Physics, 93, pp. 1335–1353, 2003.
69. L. Lu, X. Chen, X. Huang, K. Lu, “Revealing the Maximum Strength in Nanotwinned Copper”, Scienc, 323, pp. 607-610, 2009.
70. M.Y. Kuo, C.K. Lin, C. Chen, K.N. Tu, Asymmetrical Growth of Cu6Sn5 Intermetallic Compounds Due to Rapid Thermomigration of Cu in Molten SnAg Solder Joints”, Intermetallics, 29, pp. 155-158, 2012.
71. A. Paul, C. Ghosh, W.J. Boettinger, “Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System”, Metallurgical and Materials Transactions A, 42A, pp.952-963, 2011.
72. K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability, first ed., Springer, New York, 2007.
73. S. Hotta, K. Matsumoto, T. Murakami, T. Narushima and C. Ouchi, “Dynamic and Static Restoration Behaviors of Pure Lead and Tin in the Ambient Temperature Range”, Materials Transactions, 48, pp. 2665-2673, 2007.
74. National Institute of Standards and Technology, http://www.nist.gov/
75. C.S. Tan, R.J. Gutmann, L.R. Reif, Wafer Level 3-D ICs Process Technology, first ed., Springer, New York, 2009.
76. M. Onishi, H. Fujibuchi, “Reaction-diffusion in the Cu-Sn system”, Transactions of the Japan Institute of Metals, 16, pp. 539-547, 1975.
77. Z. Mei, A.J. Sunwoo, J.W. Morris Jr, “Analysis Of Low-Temperature Intermetallic Growth In Copper-Tin Diffusion Couples”, Metallurgical Transactions A-Physical Metallurgy And Materials Science, 23, Issue 3, pp. 857-864, 1992.
78. B.F. Dyson, T.R. Anthony, D Turnbull, “Interstitial Diffusion of Copper in Tin”, Journal of Applied Physics, 38, pp. 3408, 1967.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊