|
1. Introduction to Moore’s Law on Wikipedia, http://en.wikipedia.org/wiki/Moore's_law 2. http://www.electroiq.com/articles/ap/2011/03/imaps--3d-ic-toolset.html 3. S. Nishikawa, S. Kikuchi, “Diffraction of Cathode Rays by Mica”, Nature, 121, Issue 3061, pp. 1019-1020, 1928. 4. S. Nishikawa, S. Kikuchi, “Diffraction of Cathode Rays by Calcite”, Nature, 122, Issue 3080, pp. 726, 1928. 5. J.A. Venables, C.J. Harland, “Electron back-scattering patterns – A new technique for obtaining crystallographic information in the scanning electron microscope”, Philosophical Magazine, 27, Issue 5, pp. 1193–1200, 1973. 6. D. Dingley, J.W. Steeds, “Quantitative Scanning Electron Microscopy”, Academic Press, London, UK, 1974.. 7. D.G. Coates, “Kikuchi-like Reflection Patterns obtained with the Scanning Electron Microscope”, Philosophical Magazine, 16, Issue 144, pp. 1179-1184, 1967. 8. D.J. Dingley, “Diffraction from sub-micron areas using electron backscattering in a scanning electron microscope”, Scanning Electron Microscopy, 11, pp. 569–575, 1984. 9. D.J. Dingley, K. Baba-Kishi, “Use of Electron Backscatter Diffraction Patterns for determination of crystal symmetry elements”, Scanning Electron Microscopy, 11, pp. 383–391, 1986. 10. D.J. Dingley, R. Mackenzie, K. Baba-Kishi, “Application of backscatter Kikuchi diffraction for phase identification and crystal orientation measurements in materials”, Microbeam Analysis. Ed. P.E. Russell, pp. 435–436, San Francisco Press, 1989. 11. D.J. Dingley, M. Longdon, J. Wienbren, J. Alderman,“On-line analysis of electron backscatter diffraction patterns, texture analysis of polysilicon”, Scanning Electron Microscopy, 11, pp. 451–456, 1987. 12. N.-H. Schmidt, N.Ø. Olesen, “Computer-aided determination of crystal-lattice orientation from electronchanneling patterns in the SEM”, Canadian Mineralogist, 27, pp. 15–22, 1989. 13. D. Juul-Jensen, N.H. Schmidt, “Automatic recognition of electron backscattering patterns”, Proceedings of Recrystallization ‘90. Ed. by T.C. Chandra, TMS, pp. 219–224, Warrendale, Pennsylvania, 1990. 14. J.C. Russ, D.S. Bright, J.C. Russ, T.M. Hare, “Application of the Hough transform to electron diffraction patterns”, J. Computer-Assisted Microscopy, 1, pp. 3–37, 1989. 15. N.C. Krieger-Lassen, K. Conradsen, D. Juul-Jensen,“Image processing procedures for analysis of electron back scattering patterns”, Scanning Microscopy, 6, pp. 115–121, 1992. 16. S.I. Wright, D.P. Field, “Analysis of multiphase materials using electron backscatter diffraction”, pp. 561– 562 in Proc. Microscopy and Microanalysis ’97. Eds. G.W. Bailey, R.V.W. Dimlich, K.B. Alexander, J.J. McCarthy, T.P. Pretlow, Springer, 1997. 17. S.I. Wright, M.M. Nowell, “Chemistry assisted phase differentiation in automated electron backscatter diffraction”, pp. 682CD in Proceedings Microscopy and Microanalysis 2002, Québec City, Québec, Canada, Cambridge University Press, 2002. 18. J.J.L. Mulders, A.P. Day, Three-dimensional texture analysis, ICOTOM 14: Textures of Materials, 495-497, pp. 237-242, 2005. 19. Oxford Instrument, http://www.ebsd.com/index.php/ebsd-analysis/types-of-ebsd-experiment/3d-ebsd 20. Carl Zeiss Microscopy, http://microscopy.zeiss.com/microscopy/en_de/products/microscope-components/upgrade/3d-ebsd.html 21. O.C. Wells, “Comparison of different models for the generation of electron backscattering patterns in the scanning electron microscope”, Scanning, 21 pp. 368-371, 1999. 22. A. Winkelmann, C. Trager-Cowan, F. Sweeney, A.P. Day, P. Parbrook, “Many-beam dynamical simulation of electron backscatter diffraction patterns”, Ultramicroscopy, 107, pp. 414-421, 2007. 23. S. Zaefferer, “On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns”, Ultramicroscopy, 107, pp. 254-266, 2007. 24. Introduction to Hough Transformation on Wikipedia, http://en.wikipedia.org/wiki/Hough_transform 25. D. Stojakovic, “Electron backscatter diffraction in materials characterization”, Processing and Application of Ceramics, 6, Issue 1, pp. 1-13, 2012. 26. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science, 304, pp. 422-426, 2004. 27. X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, “Dislocation nucleation governed softening and maximum strength in nano-twinned metals”, Nature, 464, pp. 877-880, 2010. 28. Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, K. Lu, “Tensile properties of copper with nano-scale twins”, Scripta Materialia, 52, Issue 10, 2005. 29. T. Zhu, J. Li, A. Samanta, H.G. Kim, Subra Suresh, “Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals”, Proceedings of the National Academy of Sciences of the United States of America, 104, No. 9, pp. 3031-3036, 2007 30. K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, "Observation of atomic diffusion at twin-modified grain boundaries in copper", Science, 321, pp. 1066-1069, 2008. 31. H.Y. Hsiao, C.M. Liu, H.W. Lin, T.C. Liu, C.L. Lu, Y.S. Huang, C. Chen, K. N. Tu, “Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper”, Science, 336, pp. 1007-1010, 2012. 32. G. E. R. Schulze: Metallphysik, Akademie-Verlag, Berlin 1967 33. J.D. Bernal. “The Complex Structure of the Copper–Tin Intermetallic Compounds” Nature, 122:54, 1928 34. A.K. Larsson, L. Stenberg, S. Lidin, Acta Crystallographica Section B, 50, Part 6, pp. 636-643, 1994. 35. G. Ghosh, M. Asta, “Phase Stability, Phase Transformations, and Elastic 36. Properties of Cu6Sn5: Ab Initio Calculations and Experimental Results”, Journal of Materials Research, 20, pp. 3102-3117, 2005. 37. T. Laurila, V. Vuorinen ,M. Paulasto-Kröckel, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering”, Materials Science and Engineering: R: Reports, 68, Issue 1-2, pp. 1-38, 2010. 38. T. Laurila, V. Vuorinen, J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Materials Science and Engineering: R: Reports, 49, Issue 1-2, pp. 1-60, 2005 39. K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, Q.F. Gu, “Kinetics of the η-η' transformation in Cu6Sn5”, Scripta Materialia, 65, pp. 922-925, 2011. 40. K. Nogita, “Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys”, Intermetallics, 18, Issue 1, pp. 145-149, 2010. 41. K. Nogita, T. Nishimura, “Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys”, Scripta Materialia, 59, Issue 2, pp. 191-194, 2008. 42. U. Schwingenschlögl U, C.D. Paola, K. Nogita, C.M. Gourlay, “The influence of Ni additions on the relative stability of η and η' Cu6Sn5” Applied Physics Letters, 96, Issue 6, pp. 061908-1, 2010 43. J.O. Suh, K.N. Tu, N. Tamura, “Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu” Applied Physics Letters, 91, Issue 5, pp. 051907, 2007. 44. J.O. Suh, K.N. Tu, N. Tamura, “Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu”, Journal of Applied Physics, 102, Issue 6, pp. 063511, 2007. 45. H.F. Zou, H.J. Yang, Z.F. Zhang, “Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals”, Acta Materialia, 56, Issue 11, pp. 2649-2662, 2008 46. H.F. Zou, H.J. Yang, Z.F. Zhang, “A study on the orientation relationship between the scallop-type Cu6Sn5 grains and (011) Cu substrate using electron backscattered diffraction”, Journal Of Applied Physics, 106, Issue 11, pp. 113512, 2009 47. NASA Goddard Tin Whisker Homepage, http://nepp.nasa.gov/whisker/ 48. Design News 7/25/2012 http://www.designnews.com/document.asp?doc_id=247907 49. H.L. Cobb, “Cadmium Whiskers”, Monthly Rev. Am. Electroplaters Soc., 33 (28): pp. 28-30, Jan. 1946. 50. K.G. Compton, A. Mendizza, and S.M. Arnold, “Filamentary Growths on Metal Surfaces Whiskers”, Corrosion 7(10): pp. 327-334, October 1951. 51. K.N. Tu, J.C.M. Li, “Spontaneous whisker growth on lead-free solder finishes”, Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing, 409, Issue: 1-2, pp. 131-139, 2005 52. U. Lindborg, “A model for the spontaneous growth of zinc, cadmium and tin whiskers “, Acta Metallurgica, 24, Issue 2, pp. 181-6, 1976. 53. P.T. Vianco, J.A. Rejent, “Dynamic Recrystallization (DRX) as the Mechanism for Sn Whisker Development”, Journal Of Electronic Materials, 38, Issue 9, pp. 1815-1825, 2009. 54. W. Zhang, A. Egli, F. Schwager, N. Brown, “Investigation of Sn-Cu intermetallic compounds by AFM: new aspects of the role of intermetallic compounds in whisker formation“, Electronics Packaging Manufacturing, IEEE Transactions on, 28, Issue 1, 2005. 55. R.M. Fisher, L.S. Darken, K.G. Carroll,” Accelerated growth of tin whiskers”, Acta Metallurgica, 2, Issue 3, pp. 368–369, 371–373, 1954. 56. J.W. Shin, E. Chason, “Stress behavior of electroplated Sn films during thermal cycling” Journal of Materials Research, 24, pp. 1522-1528, 2009. 57. J.W. Osenbach, R.L. Shook, B.T. Vaccaro, B.D. Potteiger, A.N. Amin, K.N. Hooghan, P. Suratkar, P. Ruengsinsub, “Sn whiskers: Material, design, processing, and post-plate reflow effects and development of an overall phenomenological theory”, IEEE Transactions On Electronics Packaging Manufacturing, 28, Issue 1, pp. 36-62, 2005. 58. B.Z. Lee, D.N. Lee, “Spontaneous growth mechanism of tin whiskers”, Acta Materialia, 46, Issue 10, pp. 3701-3714, 1998. 59. W.J. Boetinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, G.R. Stafford, “Whisker and Hillock formation on Sn, Sn–Cu and Sn–Pb Electrodeposits”, Acta Materialia, 53, pp. 5033–5050, 2005. 60. K.N. Tu, “Interdiffusion and reaction in bimetallic Cu-Sn thin films”, Acta Metallurgica, 21, Issue 4, pp. 347–354, 1973. 61. K.N. Tu, “Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions”, Physical Review B, 49, pp. 2030-2034, 1994. 62. K. Suganumaa, A. Baateda, K.S. Kima, K. Hamasakia, N. Nemotob, T. Nakagawac, T. Yamadad, “Sn whisker growth during thermal cycling”, Acta Materialia, 59, Issue 19, pp. 7255-7267, 2011. 63. M. Sobiech, U. Welzel, E. J. Mittemeijer, W. Hügel, A. Seekamp, “Driving force for Sn whisker growth in the system Cu–Sn”, Applied Physics Letters, 93, pp. 011906, 2008. 64. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, K.S. Kumar, “Whisker formation in Sn and Pb–Sn coatings: Role of intermetallic growth, stress evolution, and plastic deformation processes” Applied Physics Letters, 92, pp. 171901, 2008. 65. T.C. Liu, C. Chen, K.J. Chiu, H.W. Lin, J.C. Kuo, “Novel EBSD preparation method for Cu/Sn microbumps using a focused ion beam”, Materials Characterization, 74, pp. 42-48, 2012. 66. H. K. Kim, K. N. Tu, “Kinetic analysis of the soldering reaction be- tween eutectic SnPb alloy and Cu accompanied by ripening,” Physical Review B, 53, pp. 16027–16034, 1996. 67. A. M. Gusak, K. N. Tu, “Kinetic theory of flux-driven ripening,” Physical Review B, 66, pp. 115403-1 to -14, 2002. 68. K. N. Tu, A. M. Gusak, and M. Li, “Physics and materials challenges for Pb-free solders,” Journal of Applied Physics, 93, pp. 1335–1353, 2003. 69. L. Lu, X. Chen, X. Huang, K. Lu, “Revealing the Maximum Strength in Nanotwinned Copper”, Scienc, 323, pp. 607-610, 2009. 70. M.Y. Kuo, C.K. Lin, C. Chen, K.N. Tu, Asymmetrical Growth of Cu6Sn5 Intermetallic Compounds Due to Rapid Thermomigration of Cu in Molten SnAg Solder Joints”, Intermetallics, 29, pp. 155-158, 2012. 71. A. Paul, C. Ghosh, W.J. Boettinger, “Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System”, Metallurgical and Materials Transactions A, 42A, pp.952-963, 2011. 72. K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability, first ed., Springer, New York, 2007. 73. S. Hotta, K. Matsumoto, T. Murakami, T. Narushima and C. Ouchi, “Dynamic and Static Restoration Behaviors of Pure Lead and Tin in the Ambient Temperature Range”, Materials Transactions, 48, pp. 2665-2673, 2007. 74. National Institute of Standards and Technology, http://www.nist.gov/ 75. C.S. Tan, R.J. Gutmann, L.R. Reif, Wafer Level 3-D ICs Process Technology, first ed., Springer, New York, 2009. 76. M. Onishi, H. Fujibuchi, “Reaction-diffusion in the Cu-Sn system”, Transactions of the Japan Institute of Metals, 16, pp. 539-547, 1975. 77. Z. Mei, A.J. Sunwoo, J.W. Morris Jr, “Analysis Of Low-Temperature Intermetallic Growth In Copper-Tin Diffusion Couples”, Metallurgical Transactions A-Physical Metallurgy And Materials Science, 23, Issue 3, pp. 857-864, 1992. 78. B.F. Dyson, T.R. Anthony, D Turnbull, “Interstitial Diffusion of Copper in Tin”, Journal of Applied Physics, 38, pp. 3408, 1967.
|