|
[1] S. Rupak, S. Jason and M. Rabi, “Dynamic aggregation of virtual addresses in TLB using TCAM cells,” in Proc. the 21st International Conference on VLSI Design, 2008, pp. 243-248. [2] Y. Lee, T. Lee, S. An and Y. Lee, “Indirectly-compared cache tag memory using a shared tag in a TLB,” Electronics Letters, vol. 33, no. 21, pp. 1764-1766, 1997. [3] J.-H. Choi, J.-H. Lee, S.-W. Jeong, S.-D. Kim and C. Weems, “A low power TLB structure for embedded systems,” the Computer Architecture Letters, vol. 1, no. 1, pp. 3, 2002. [4] B.-W.-Y. Wei, R. Tamer, J.-S. Kim and K. Ng, “A single chip Lempel-Ziv data compressor,” in Proc. the 1993 IEEE International Symposium on Circuits and Systems(ISCAS), vol. 3, 1993, pp. 1953-1955. [5] C.-Y. Lee and R.-Y. Yang, “High-throughput data compressor designs using content addressable memory,” in Proc. the IEEE Circuits, Devices and Systems, vol. 142, no. 1, 1995, pp. 69-73. [6] D. J. Craft, “A fast hardware data compression algorithm and some algorithmic extensions,” IBM Journal of Research and Development, vol. 42, no. 6, pp. 733-746, 1998. [7] S. Panchanathan and M. Goldberg, “A content-addressable memory architecture for image coding using vector quantization,” IEEE Transactions on Signal Processing, vol. 39, no. 9, pp. 2066-2078, 1991. [8] A.-J. McAuley and P. Francis, “Fast routing table lookup using CAMs,” in Proc. the IEEE Conference on Computer Communications(INFOCOM '93), vol. 3, 1993, pp. 1382-1391. [9] N.-F. Huang, W.-E. Chen, J.-Y. Luo and J.-M. Chen, “Design of multi-field IPv6 packet classifiers using ternary CAMs,” in Proc. the IEEE Global Telecommunications Conference(GLOBECOM), vol. 3, 2001, pp. 1877-1881. [10] G. Qin, S. Ata, I. Oka and C. Fujiwara, “Effective bit selection methods for improving performance of packet classifications on IP routers,” in Proc. the IEEE Global Telecommunications Conference(GLOBECOM), vol. 3, 2002, pp. 2350-2354. [11] H.-J. Chao, “Next generation routers,” Proc. of the IEEE, vol. 90, no. 9, pp. 1518-1558, 2002. [12] P. Kostas and S. Ali, “Content-addressable memory (CAM) circuits and architectures: a tutorial and survey,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 712-727, Mar. 2006. [13] I. Arsovski, T. Chandler and S. Ali, “A ternary content-addressable memory (TCAM) based on 4T static storage and including a current-race sensing scheme,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 155-158, Jan. 2003. [14] I. Arsovski and S. Ali, “A mismatch-dependent power allocation technique for match-line sensing in content-addressable memories,” IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1958-1966, Nov. 2003. [15] N. Mohan, W. Fung, D. Wright and M. Sachdev, “Match Line Sense Amplifiers with Positive Feedback for Low-Power Content Addressable Memories,” in Proc. 2006 IEEE Custom Integrated Circuits Conference, 2006, pp. 297-300. [16] N. Mohan, W. Fung, D. Wright and M. Sachdev, “A low-power ternary CAM with positive-feedback match-line sense amplifiers,” IEEE Transactions on Circuits and Systems, vol. 56, no. 3, pp. 566-573, 2009. [17] B.-D. Yang and L.-S. Kim, “A low-power CAM using pulsed NAND-NOR match-line and charge-recycling search-line driver,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1736-1744, Aug. 2005. [18] K.-H. Cheng, C.-H. Wei and S.-Y. Jiang, “ Static divided word matching line for low-power content addressable memory design,” in Proc. the 2004 International Symposium on Circuits and Systems(ISCAS), vol. 2, May 23-26 2004, pp. 629-32. [19] P.-T. Huang, W.-K. Chang and W. Hwang, “Low power pre-comparison scheme for NOR-type 10T content addressable memory,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems, Dec. 4-7 2006, pp. 1301-1304. [20] P. Kostas and S. Ali, “A low-power content-addressable memory (CAM) using pipelined hierarchical search scheme,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1512-1519, Sep. 2004. [21] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits, ” in Proc. IEEE, vol. 91, no. 2, Feb. 2003, pp.305-327. [22] N. H. E. Weste and D. M. Harris, Integrated Circuit Design, 4th ed., Pearson Education, 2011, ch.4. [23] Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of standby leakage power in CMOS circuits considering accurate modeling of transistor stacks,” in Proc. Int. Symp. Low Power Electronics and Design, 1998, pp. 239-244. [24] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan, “Scaling of stack effect and its application for leakage reduction,” in Proc. Int. Symp. Low Power Electronics and Design, 2001, pp. 195-200. [25] Y. Oowaki et al., “A sub-0.1 µm circuit design with substrate-over-biasing,” in Proc. IEEE Int. Solid-State Circuits Conf., 1998, pp. 88-89. [26] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage,” IEEE J. Solid-State Circuits, Vol. 37, No. 11, pp. 1396-1402, Nov. 2002. [27] C. Neau and K. Roy, “Optimal body bias selection for leakage improvement and process compensation over different technology generations,” in Proc. Int. Symp. Low Power Electronics and Design, Aug. 2003, pp. 116-121. [28] M. Nomura, Y. Ikenaga, K. Takeda, Y. Nakazawa, Y. Aimoto, and Y. Hagihara, “Delay and power monitoring schemes for minimizing power consumption by means of supply and threshold voltage control in active and standby modes,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp.805-814, Apr. 2006. [29] H. Jeon, Y.-B. Kim, M. Choi, “Standby leakage power reduction technique for nanoscale CMOS VLSI systems,” IEEE Trans. Instrumentation and Measurement, vol. 59, no. 5, pp. 1127-1133, May 2010. [30] P. Pant, V. K. De, and A. Chatterjee, “Simultaneous power supply, threshold voltage, and transistor size optimization for low-power operation of CMOS circuits,” IEEE Trans. VLSI Syst., vol. 6, no.4, pp. 538-545, Dec. 1998. [31] L. Wei, Z. Chen, K. Roy, M. C. Johnson, Y. Ye, and V. K. De, “Design and optimization of dual threshold circuits for low-voltage low-power applications,” IEEE Trans. VLSI Syst., vol. 7, no. 1, pp. 16-24, Mar. 1999. [32] S. Mutob, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS,” IEEE J. Solid-State Circuits, vol. 30, no. 8, pp. 847-854, Aug. 1995. [33] T. Inukai, M. Takamiya, K. Nose, H. Kawaguchi, T. Hiramoto, and T. Sakurai, “Boosted gate MOS (BGMOS): device/circuit cooperation scheme to achieve leakage-free giga-scale integration,” in Proc. IEEE Custom Integrated Circuits Conf., 2000, pp. 409-412. [34] H. Kawaguchi, K. Nose, and T. Sakurai, “A super cut-off CMOS (SCCMOS) scheme for 0.5-V supply voltage with picoampere stand-by current, ” IEEE J. Solid-State Circuits, vol. 35, no.10, pp. 1498-1501, Oct. 2000. [35] K. Ishida, K. Kanda, A. Tamtrakarn, H. Kawaguchi, and T. Sakurai, “Managing subthreshold leakage in charge-based analog circuits with low-VTH transistors by analog T- switch (AT-switch) and super cut-off CMOS (SCCMOS),” IEEE J. Solid-State Circuits, vol. 41, no.4, pp. 859-867, Apr. 2006. [36] T. Kuroda, T. Fujita, T. Nagamatu, S. Yoshioka, T. Sei, K. Matsuo, Y. Hamura, T. Mori, M. Murota, M. Kakumu, and T. Sakurai, “A high-speed low-power 0.3 μm CMOS gate array with variable threshold voltage (VT) scheme,” in Proc. IEEE Custom Integrated Circuits Conf., 1996, pp. 53-56. [37] K.-S. Min and T. Sakurai, “Zigzag super cut-off CMOS (ZSCCMOS) scheme with self-saturated virtual power lines for subthreshold-leakage-suppressed sub-1-v-vdd LSI’s,” in Proc. European Solid-State Circuits Conf., 2002, pp. 679-682. [38] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Methodology Manual: For System-on-Chip Design, Springer Publishing Company, 2007. [39] E. Nowak et al., “Turning Silicon on Its Edge,” IEEE Circuits &; Device Magazine, pp. 20-31, Jan./Feb. 2004. [40] M. Agostinelli, M. Alioto, D. Esseni, and L. Selmi, “Leakage-delay tradeoff in FinFET logic circuits: A comparative analysis with bulk technology,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 2, pp. 232–245, Feb. 2010. [41] S. A. Tawfik, Z. Liu, and V. Kursun, “Independent-gate and tied-gate FinFET SRAM circuits: Design guidelines for reduced area and enhanced stability,” in Proc. ICM, 2007, pp. 171–174. [42] “Predictive Technology Model (PTM),” http://ptm.asu.edu/ [43] “BGP Routing Table Analysis Reports,” http://bgp.potaroo.net/v6/as2.0/index.html/ [44] P. T. Huang, S. W. Chang, W. Y. Liu, and W. Hwang, “ Green microarchitecture and circuit co-design for ternary content addressable memory,” in Proc. IEEE International Symposium on Circuits and Systems ISCAS, 2008, pp. 3322–3325. [45] Y.-J. Chang,“Using the Dynamic Power Source Technique to Reduce TCAM Leakage Power,” IEEE Transactions on Circuits and Systems Part II: Express Briefs, Vol.57, pp. 888-892, 2010. [46] Y.-J. Chang, K.-L. Tsai, H.-J. Tsai,“Low Leakage TCAM for IP Lookup Using Two-Side Self-Gating,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol.60, pp. 1478 - 1486, 2013. [47] S. Baeg,“Low-Power Ternary Content-Addressable Memory Design Using a Segmented Match Line,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol.55, pp. 1485 - 1494, 2008. [48] T. Lin, K. Chong, B. Gwee and J. S. Chang, "Fine-Grained Power Gating for Leakage and Short -Circuit Power Reduction by Using Asynchronous-Logic," IEEE Int. Symp. Circuits and Systems, pp. 3162-3165, May. 2009. [49] Y.-J. Chang, T.-C. Wu,“A low-power TCAM design using mask-aware match-line (MAML) technique,” in Proc. the 21st Great Lakes Symposium on VLSI, 2011, pp. 109-114. [50] M.-C. Chang, K.-L. He and Y.-C. Wang, “Design of Asymmetric TCAM (Ternary Content-Addressable Memory) Cells Using FinFET,”accepted, to appear in Proc. 2014 IEEE 3rd Global Conference on Consumer Electronics, 2014.
|