王富民 (2009)。以資料探勘技術分析學習評量資料─以國中力與運動概念為例(未出版之碩士論文)。國立臺灣師範大學圖書資訊學研究所碩士論文。臺北市。余民寧(1997)。教育測驗與評量─成就測驗與教學評量。臺北市: 心理。
呂秋文(2000)。新數學科教材教法。臺北市:五南圖書。
佐藤隆博(1975)。S-P表の作成と解釋:授業分析:學習診斷のために。東京:明治圖書。
柯皓仁、楊雅雯、吳安琪、戴玉旻、楊維邦(2002)。個人化及群體化圖書館資訊服務初探。國家圖書館館刊,91(1),161-195。陳垂呈(2004)。利用關聯規則發掘圖書館個人化之書籍推薦。圖書資訊學刊,2(2),87-103。陳建宏(2000)。以色塊屬性關聯規則建立影像分類決策之研究(未出版之碩士論文)。國立臺灣師範大學資訊工程研究所學位論文。臺北市。陳建傑(2010)。基於借閱目的之資料清理機制研究─以興趣目的為例(未出版之碩士論文)。國立臺灣師範大學圖書資訊學研究所碩士學位論文。臺北市。彭文正(2001)。資料採礦:顧客關係管理暨電子行銷之應用。臺北: 數博網資訊。
曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯(2005)。資料探勘 Data Mining。臺北: 旗標。
謝建成、林湧順(2006)。書目探勘讀者使用圖書館之行為。教育資料與圖書館學, 44(1),35-60。Ausubel, D. P. (1962). A subsumption theory of meaningful verbal learning and retention. The Journal of General Psychology, 66(2), 213-224.
Ausubel, D. P. (1963). The psychology of meaningful verbal learning: Grune & Stratton New York.
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., Zanasi, A., ., I. B. M. C., & ., I. T. S. O. (1998). Discovering data mining: from concept to implementation (Vol. 1): Prentice Hall Upper Saddle River, NJ.
Chiou, C. C. (2008). The effect of concept mapping on students’ learning achievements and interests. Innovations in Education and Teaching International, 45(4), 375-387.
Chung, H. M., & Gray, P. (1999). Special section: data mining. Journal of Management Information Systems, 16(1), 11-16.
Hall, C. (1995). The devil's in the details: techniques, tools, and application for database mining and knowledge discovery part II. Intelligent Software Strategies, 6(9), 1-16.
Hen, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques, 3/e. Morgan Kaufmann.
Hwang, G. J., Shi, Y. R., & Chu, H. C. (2011). A concept map approach to developing collaborative Mindtools for context‐aware ubiquitous learning. British Journal of Educational Technology, 42(5), 778-789.
Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30(1), 17-24.
Kumar, V., & Chadha, A. (2012). Mining Association Rules in Student’s Assessment Data. International Journal of Computer Science Issues, 9(5), 211-216.
Lee, C. H., Lee, G. G., & Leu, Y. (2009). Application of automatically constructed concept map of learning to conceptual diagnosis of e-learning. Expert Systems with Applications, 36(2), 1675-1684.
Liao, S. H., & Chen, Y. J. (2004). Mining customer knowledge for electronic catalog marketing. Expert Systems with Applications, 27(4), 521-532.
McClure, J. R., Sonak, B., & Suen, H. K. (1999). Concept map assessment of classroom learning: Reliability, validity, and logistical practicality. Journal of research in science teaching, 36(4), 475-492.
Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them. Florida Institute for Human and Machine Cognition Pensacola Fl, www. ihmc. us.[http://cmap. ihmc. us/Publications/ResearchPapers/T heoryCmaps/TheoryUnderlyingConceptMaps. htm], 284.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn: Cambridge University Press.
Roth, W. M., & Roychoudhury, A. (1993). The concept map as a tool for the collaborative construction of knowledge: A microanalysis of high school physics students. Journal of research in science teaching, 30(5), 503-534.
Sato, T. (1985). Introduction to student-problem curve theory analysis and evaluation. Tokyo: Mejji Tosho.
Tan, P. N. (2007). Introduction to data mining: Pearson Education India.