|
[1]Ances, B. M. (2004). "Coupling of changes in cerebral blood flow with neural activity: what must initially dip must come back up." J Cereb Blood Flow Metab 24(1): 1-6. [2]Ances, B. M., et al. (1998). "Transcranial laser doppler mapping of activation flow coupling of the rat somatosensory cortex." Neurosci Lett 257(1): 25-28. [3]Ogawa, S., Lee, T. M., Nayak, A. &; Glynn, P. (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields.. Magn. Reson. Med. 14,68-78. [4]Fox, P. T., Raichle, M. E. (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83, 1140-1144. [5]Fox, P. T., Raichle, M. E., Mintun, M. A. &; Dence, C. (1988) Nonoxidaive glucose consumption during focal physiological nerural activity. Science 241, 462-464. [6]Ogawa, S., Lee, T. M., Kay, A. R. &; Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990) [7]Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34: 4–10. [8]Kim SG, Ugurbil K (1997) Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magn Reson Med 38: 59–65. [9]Fox, M. D. and M. E. Raichle (2007). "Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging." Nat Rev Neurosci 8(9): 700-711. [10]Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., Quigley, M.A., Meyerand, M.E., 2000. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 21 (9), 1636–1644. [11]Aertsen, A.M., Gerstein, G.L., Habib, M.K., Palm, G., 1989. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 61 (5), 900–917. [12]Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34 (4), 537–541. [13]Biswal, B. B., VanKylen, J., &; Hyde, J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. Nmr in Biomedicine, 10(4-5), 165-170. [14]Broyd, Samantha J.; Demanuele, Charmaine; Debener, Stefan; Helps, Suzannah K.; James, Christopher J.; Sonuga-Barke, Edmund J.S. (2009). "Default-mode brain dysfunction in mental disorders: A systematic review". Neuroscience &; Biobehavioral Reviews 33 (3): 279–96. [15]Birn, R.M., Diamond, J.B., Smith, M.A., Bandettini, P.A., 2006. Separating respiratory-variation-related fluctuations from neu- ronal-activity-related fluctuations in fMRI. Neuroimage 31 (4), 1536–1548. [16]Birn, R.M., Smith, M.A., Jones, T.B., Bandettini, P.A., 2008. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 40 (2), 644–654. [17]Shmueli, K., van Gelderen, P., de Zwart, J.A., Horovitz, S.G., Fukunaga, M., Jansma, J.M., Duyn, J.H., 2007. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 38 (2), 306–320. [18]Lin, F. H., et al. (2006). "Dynamic magnetic resonance inverse imaging of human brain function." Magn Reson Med 56(4): 787-802. [19]Lin, F. H., et al. (2008). "Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing." Neuroimage 42(1): [20]Lin, F. H., et al. (2008). "Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging." Neuroimage 43(2): 297-311. [21]Zahneisen, B., et al. (2011). "Three-dimensional MR-encephalography: fast volumetric brain imaging using rosette trajectories." Magn Reson Med 65(5): 1260-1268. [22]Feinberg, D. A., et al. (2010). "Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging." PLoS One 5(12): e15710. [23]Baria, A. T., et al. (2011). "Anatomical and functional assemblies of brain BOLD oscillations." J Neurosci 31(21): 7910-7919. [24]Boubela, R. N., et al. (2013). "Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest." Front Hum Neurosci 7: 168. [25]Lee, H. L., et al. (2013). "Tracking dynamic resting-state networks at higher frequencies using MR-encephalography." Neuroimage 65: 216-222. [26]Mingoia, G., et al. (2013). "Frequency domains of resting state default mode network activity in schizophrenia." Psychiatry Res 214(1): 80-82. [27]Nir, Y., et al. (2006). "Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation." Neuroimage 30(4): 1313-1324. [28]Cordes, D., et al. (2000). "Mapping functionally related regions of brain with functional connectivity MR imaging." AJNR Am J Neuroradiol 21(9): 1636-1644. [29]Lowe, M. J., et al. (1998). "Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations." Neuroimage 7(2): 119-132. [30]Kleiner M, Brainard D, Pelli D, 2007, "What''s new in Psychtoolbox-3?" Perception 36 ECVP Abstract Supplement. [31]Brainard, D. H. (1997) The Psychophysics Toolbox, Spatial Vision 10:433-436. [32]Pelli, D. G. (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies, Spatial Vision 10:437-442. [33]Sarkka, S., et al. (2012). "Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER." Neuroimage 60(2): 1517-1527. [34]Rogers, B. P., et al. (2007). "Assessing functional connectivity in the human brain by fMRI." Magn Reson Imaging 25(10): 1347-1357. [35]Bedrosian, E. (December 1962), "A Product Theorem for Hilbert Transforms", Rand Corporation Memorandum (RM-3439-PR) [36]Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., et al. (2001). Frequencies con- tributing to functional connectivity in the cerebral cortex in “resting- state” data. AJNR Am. J. Neuroradiol. 22, 1326–1333. [37]I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961–1005, 1990. [38]M. Unser and A. Aldroubi, “A review of wavelets in biomedical applications,” Proceedings of the IEEE, vol. 84, pp. 626–638, 1996.
|