跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/08 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈芳瑩
研究生(外文):Fang-Ying Shen
論文名稱:一、環境中鉛與錳的產前暴露對兒童早期氣質表現的可能影響;二、台灣年輕人高血壓世代研究族群雙酚A與頸動脈內膜中層厚度之相關性
論文名稱(外文):Part I. Prenatal exposure to lead and manganese on temperament performance in early childhood. ; Part II. Association between bisphenol A and carotid intima-media thickness in a young hypertension cohort of Taiwan
指導教授:陳保中陳保中引用關係
指導教授(外文):Pau-Chung Chen
口試委員:謝武勳蘇大成黃耀輝李永凌
口試委員(外文):Wu-Shiun HsiehTa-Chen SuYawHuei HwangYungling Leo Lee
口試日期:2014-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:78
中文關鍵詞:氣質幼兒期雙酚A頸動脈內膜中層厚度青少年
外文關鍵詞:temperamentleadmanganeseearly childhoodbisphenol Acarotid intima-media thicknessadolescents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:818
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一、
研究背景與目的:鉛與錳金屬是環境中普遍知道的神經毒物,目前已知共同暴露這兩種金屬時,可能會造成兒童行為問題與神經發展上的負面影響。另外,嬰兒時期的氣質表現可以用來預測未來兒童的行為問題,視為未來行為問題的早期表現,然而,現在仍然不清楚當媽媽懷孕期間暴露鉛與錳金屬是否會對於兒童早期的氣質有影響。因此本篇的研究目的在於釐清母親懷孕期的鉛錳共同暴露與兒童早期氣質表現的相關性。
方法:本篇研究的族群來自於台灣出生世代追蹤研究(Taiwan Birth Panel Study,TBPS),共275 對母親與孩童參與,在母親生產時立即收集孩童的臍帶血,利用Agilent 7500C ICP-MS 進行鉛與錳的濃度量測,在兒童氣質表現的量測選用中文版幼兒氣質量表進行評估,由主要照顧者進行填答評估。我們利用linear regression與mixed-effect model 來分析母親鉛錳暴露與兒童氣質的相關性。
結果:我們發現在高錳暴露組,隨著鉛濃度上升,兒童氣質適應度分數會有下降的趨勢[B: -0.385; p-value: 0.058],且我們也發現反應閾分數趨勢亦同[B: -0. 404;p-value: 0.015]。
結論:媽媽懷孕期間鉛錳共同暴露對於兒童早期氣質表現可能具有交互作用的趨勢,但機制仍需要後續研究進一步釐清。

二、
研究背景與目的:雙酚A 普遍存在於聚碳酸酯塑膠、環氧樹脂製品及金屬罐頭襯裡…等食品包裝中,經接觸食品後釋出而造成暴露。雙酚A 是一種內分泌干擾物,影響體內荷爾蒙與代謝機制,造成肥胖、動脈硬化、心血管疾病…等疾病,現已知頸動脈內膜中層厚度為上述疾病的危險因子與早期的表現,然而目前探討雙酚A與頸動脈內膜中層厚度的研究有限,因此本篇研究目的在於探討在青少年與年輕成人族群中,雙酚A 的暴露與頸動脈內膜中層厚度的相關性。
方法:本研究使用極致液相層析串聯質譜儀(UPLC/MS/MS)分析887 位青少年與年輕成人血中雙酚A 濃度,並使用超因波儀量測頸動脈內膜中層厚度,代謝相關生化值則經由血液及健康檢查取得。我們利用線性迴歸探討雙酚A 暴露與頸動脈內膜中層厚度的相關性。
結果:我們發現相較於最低暴露組,在較高雙酚A 暴露組中,雙酚A 與頸動脈內膜中層增厚有關(p-value <0.0001, p for trends < 0.0001),亦發現與低密度膽固醇(p-value =0.001, p for trends = 0.001)及總膽固醇(p-value = 0.001, p for trends = 0.003)
增加有關。
結論:在青少年和年輕成年人族群中,我們發現雙酚A 暴露可能與頸動脈內膜中層厚度增加有關,亦可能直接傷害血管,加劇對頸動脈內膜中層厚度的影響,且對於女性或健康族群影響更為顯著,但機制仍需要後續研究進一步釐清。

Part I.
Background: The lead and manganese are the common neurotoxic metals in the environment. Co-exposure to lead and manganese could injure child neurodevelopment and cause behavior problems. Additionally, temperament performance in infant period may be a predictor of behavior problems in childhood. However, it is not clear that association between prenatal lead and manganese co-exposure and temperament performance in early childhood.
Aims: The purpose of this study is to understand the effect of prenatal exposure to lead and manganese on child temperament.
Methods: A total of 275 newborns from the Taiwan Birth Panel Study (TBPS) were followed up in northern Taiwan. We collected their cord blood for measuring lead and manganese levels by an Agilent 7500C ICP-MS. We used the Chinese Toddler Temperament Scale which was collected from parental reports for measuring temperament at infants and toddlers. We examined the association between lead and manganese co-exposure and child temperament by linear regression and mixed-effect models.
Results: We found that under the higher manganese level, lead level in cord blood was associated with the adaptability (B=-0.385, p-value =0.058). We also found that the co-exposure of lead and manganese was associated with threshold of responsiveness (B=-0.404, p-value=0.015).
Conclusions: Lead and manganese prenatal exposure may have an effect on early child temperament performance. Mechanistic studies are needed to elucidate the causal relationship.

Part II.
Background: The lead and manganese are the common neurotoxic metals in the environment. Co-exposure to lead and manganese could injure child neurodevelopment and cause behavior problems. Additionally, temperament performance in infant period may be a predictor of behavior problems in childhood. However, it is not clear that association between prenatal lead and manganese co-exposure and temperament performance in early childhood.
Aims: The purpose of this study is to understand the effect of prenatal exposure to lead and manganese on child temperament.
Methods: A total of 275 newborns from the Taiwan Birth Panel Study (TBPS) were followed up in northern Taiwan. We collected their cord blood for measuring lead and manganese levels by an Agilent 7500C ICP-MS. We used the Chinese Toddler Temperament Scale which was collected from parental reports for measuring temperament at infants and toddlers. We examined the association between lead and manganese co-exposure and child temperament by linear regression and mixed-effect models.
Results: We found that under the higher manganese level, lead level in cord blood was associated with the adaptability (B=-0.385, p-value=0.058). We also found that the co-exposure of lead and manganese was associated with threshold of responsiveness (B=-0.404, p-value=0.015).
Conclusions: Lead and manganese prenatal exposure may have an effect on early child temperament performance. Mechanistic studies are needed to elucidate the causal relationship.


Contents
Part I …………………………………………………….………………………....5
中文摘要 ………………………………………………………….….………………....6
Abstract ………………………………………………………..….….……………...….7
Introduction ……………………………………………………..….……………...…...8
Material and Methods ……………………………………………..…………………10
Study design and population ……………………………………..……………...…..10
Measurement of metals ……………………………………..……………….…...….11
Measurement of temperament ……………………………………………..…..……11
Other co-variables……………………………………..………………………...…...12
Statistical analysis ……………………………………..……………………….……12
Results ………………………………………………………..……………………..…14
Discussion ………………………………………………………..………………….....19
Conclusions ………………………………………………………..…………….…….22
Reference ………………………………………………………..……………….…….23
Appendix 1 …………………………………………………………..…………….…..27
Appendix 2 …………………………………………………………..…………….…..28
Appendix 3 …………………………………………………………..…………….…..29
Appendix 4 …………………………………………………………..…………….…..35



&;#8195;
Part II …………………………………………………..................……..………...……40
中文摘要 …………………………………………………………………...………….41
Abstract …………………………………………………………..…………...……….42
Introduction ……………………………………………………………......………….44
Materials and methods …………………………………………………….……….....45
Study design and population ………………………………………………………...45
Anthropometric and biochemical data ……………………………………………....46
Measurement of carotid intima-media thickness …………………………………....47
Measurement of BPA concentration ………………….……………………..……….48
Chemicals and reagents …………………………………….…………………….48
Sample preparation and calibration experiments ………….…..………………...49
Instrumental analysis …………………………………….……………………….49
Method validation and quantification ……………….……………...…………….51
Statistical analysis …………………………………….……………………………..53
Results …………………………………………………………………………………54
BPA level in human serum …………………………………………..……………....54
BPA exposure and carotid intima-media thickness …………………………….…....56
Discussion …………………………………………………………………...…….…...62
Conclusions ………………………………………………………………...…….……68
Reference ……………………………………………………………………………....69
Appendix 1 ………………………………………………………………….…………73
Appendix 2 ………………………………………………………………….…………74
Appendix 3 ………………………………………………………………….…………75
Appendix 4 ………………………………………………………………….…………76
Appendix 5 ………………………………………………………………….…………76
Appendix 6 ………………………………………………………………….…………77
Appendix 7 ………………………………………………………………….…………78
&;#8195;
Figure of contents
Part I
Figure 1. Scatterplots and regression lines of cord blood lead and adaptability temperament among children with cord blood manganese in percentile less than 75th (Mn1, interaction p-value=0.76) and more than 75th (Mn2, interaction p-value=0.07) ..................................................................................................................18
Figure 2. Scatterplots and regression lines of cord blood lead and threshold of responsiveness temperament among children with cord blood manganese in percentile less than 75th (Mn1, interaction p-value=0.13) and more than 75th (Mn2, interaction p-value=0.08) ..................................................................................................................18


Part II
Figure 1. The flow chart of study population ….............................................................46
&;#8195;
Table of contents
Part I
Table 1. Manganese and lead concentration in each characteristics of the study population .......................................................................................................................15
Table 2. Linear regression models and linear mixed-effect model of lead concentration (

Part I.
Abdelouahab N., Huel G., Suvorov A., Foliguet B., Goua V., Debotte G., Sahuquillo J., Charles MA., Takser L. Monoamine oxidase activity in placenta in relation to manganese, cadmium, lead, and mercury at delivery. Neurotoxicol Teratol 2010; 32(2): 256-261.
Barbosa, F., Tanus-Santos, Jos&;eacute; Eduardo, Gerlach, R. F., &; Parsons, P. J. A Critical Review of Biomarkers Used for Monitoring Human Exposure to Lead: Advantages, Limitations, and Future Needs. Environmental Health Perspectives 2005; 113(12): 1669-1674.
Binns, H. J., Campbell, C., Brown, M. J., Centers for Disease, Control, &; Prevention Advisory Committee on Childhood Lead Poisoning, Prevention. Interpreting and managing blood lead levels of less than 10 microg/dL in children and reducing childhood exposure to lead: recommendations of the Centers for Disease Control and Prevention Advisory Committee on Childhood Lead Poisoning Prevention. Pediatrics 2007; 120(5): e1285-1298.
Bouchard, M., Laforest, F., Vandelac, L., Bellinger, D., &; Mergler, D. Hair Manganese and Hyperactive Behaviors: Pilot Study of School-Age Children Exposed through Tap Water. Environmental Health Perspectives 2006; 115(1): 122-127.
Caldwell, B. M., &; Bradley, R. H. HOME inventory administration manual: Comprehensive edition: Little Rock, AR: University of Arkansas. 2003
Campbell, D. W., &; Eaton, W. O. Sex differences in the activity level of infants. Infant and Child Development1999; 8(1): 1-17.
Claus Henn B., Schnaas L., Ettinger AS., Schwartz J., Lamadrid-Figueroa H., Hern&;aacute;ndez-Avila M., Amarasiriwardena C., Hu H., Bellinger DC., Wright RO., T&;eacute;llez-Rojo MM. Associations of early childhood manganese and lead coexposure with neurodevelopment. Environ Health Perspect 2012; 120(1): 126-131.
Devoto, P., Flore, G., Ibba, A., Fratta, W., &; Pani, L. Lead intoxication during intrauterine life and lactation but not during adulthood reduces nucleus accumbens dopamine release as studied by brain microdialysis. Toxicology 2001; 121: 199-206.
Ericson, J. E., Crinella, F. M., Clarke-Stewart, K. A., Allhusen, V. D., Chan, T., &; Robertson, R. T. Prenatal manganese levels linked to childhood behavioral disinhibition. Neurotoxicol Teratol 2007; 29(2): 181-187.
Finkelstein, Y., Milatovic, D., &; Aschner, M. Modulation of cholinergic systems by manganese. Neurotoxicology 2007; 28(5): 1003-1014.
Fullard, W., McDevitt, S. C, &; Carey, W. B. Assessing temperament in one-to three-year-old children. Journal of Pediatric Psychology 1984; 9(2): 205-217.
Grandjean, P., &; Landrigan, P. J. Developmental neurotoxicity of industrial chemicals. The Lancet 2006; 368(9553): 2167-2178.
Hern&;aacute;ndez-Bonilla D., Schilmann A., Montes S., Rodr&;iacute;guez-Agudelo Y., Rodr&;iacute;guez-Dozal S., Sol&;iacute;s-Vivanco R., R&;iacute;os C., Riojas-Rodr&;iacute;guez H. Environmental exposure to manganese and motor function of children in Mexico. Neurotoxicology 2011; 32(5): 615-621.
Hsieh C. J., Hsieh W. S., Su Y. N., Liao H. F., Jeng S. F., Taso F. M., Hwang Y. H., Wu K. Y., Chen C. Y., Guo Y. L., Chen P. C. The Taiwan Birth Panel Study: a prospective cohort study for environmentally- related child health. BMC Res Notes 2011; 4: 291.
Hwang Y. H., Ko Y., Chiang C. D., Hsu S. P., Lee Y. H., Yu C. H., Chiou C. H., Wang J. D., Chuang H. Y. Transition of cord blood lead level, 1985-2002, in the Taipei area and its determinants after the cease of leaded gasoline use. Environ Res 2004; 96(3): 274-282.
Jones, E. A., Wright, J. M., Rice, G., Buckley, B. T., Magsumbol, M. S., Barr, D. B., &; Williams, B. L. Metal exposures in an inner-city neonatal population. Environ Int 2010; 36(7): 649-654.
Kim Y., Kim B. N., Hong Y. C., Shin M. S., Yoo H. J., Kim J. W., Bhang S. Y., Cho S. C. Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neurotoxicology 2009; 30(4): 564-571.
Kuo Y. L., Liao H. F., Chen P. C., Hsieh W. S., Hwang A. W. The influence of wakeful prone positioning on motor development during the early life. J Dev Behav Pediatr. 2008;29(5):367-76.
Hwang, L. Environmental stressors and violence: lead and polychlorinated biphenyls. Rev Environ Health 2007; 22(4): 313-328.
Lanphear B. P., Hornung R., Khoury J., Yolton K., Baghurst P., Bellinger D. C., Canfield R. L., Dietrich K. N., Bornschein R., Greene T., Rothenberg S. J., Needleman H. L., Schnaas L., Wasserman G., Graziano J., Roberts R. Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis. Environmental Health Perspectives 2005; 113(7): 894-899.
Lin C. C., Chen Y. C., Su F. C., Lin C. M., Liao H. F., Hwang Y. H., Hsieh W. S., Jeng S. F., Su Y. N., Chen P. C. In utero exposure to environmental lead and manganese and neurodevelopment at 2 years of age. Environ Res 2013; 123: 52-57.
Lin, Y. Y., Guo, Y. L., Chen, P. C., Liu, J. H., Wu, H. C., &; Hwang, Y. H. Associations between petrol-station density and manganese and lead in the cord blood of newborns living in Taiwan. Environ Res 2011; 111(2): 260-265.
Liu J., Xu X., Wu K., Piao Z., Huang J., Guo Y., Li W., Zhang Y., Chen A., Huo X.Association between lead exposure from electronic waste recycling and child temperament alterations. Neurotoxicology 2011; 32(4): 458-464.
Liu, K. S., Hao, J.H., Zeng, Y., Dai, F. C., &; Gu, P. Q. Neurotoxicity and Biomarkers of Lead Exposure: a Review. Chinese Medical Sciences Journal 2013; 28(3): 178-188.
Lockman, P. R., Roder, K. E., &; Allen, D. D. Inhibition of the rat blood–brain barrier choline transporter by manganese chloride. Neurochemistry 2001; 79: 588-594.
Long, G. J., Rosen, J. F., &; Schanne, F. A. X. Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR. BIOLOGICAL CHEMISTRY 1994; 269(January 14): 834-837.
Lucchini R. G., Zoni S., Guazzetti S., Bontempi E., Micheletti S., Broberg K., Parrinello G., Smith D. R. Inverse association of intellectual function with very low blood lead but not with manganese exposure in Italian adolescents. Environ Res 2012; 118: 65-71.
MA., Verity. Manganese neurotoxicity: a mechanistic hypothesis. Neurotoxicology 1999; 20(2): 489-497.
Martel M. M. &; Nigg J. T. Child ADHD and personality/temperament traits of reactive and effortful control, resiliency, and emotionality. J Child Psychol Psychiatry. 2006; 47(11):1175-83.
Menezes-Filho, J. A., Novaes Cde, O., Moreira, J. C., Sarcinelli, P. N., &; Mergler, D. Elevated manganese and cognitive performance in school-aged children and their mothers. Environ Res 2011; 111(1): 156-163.
Nigg J. T., Goldsmith H. H., &; Sachek J. Temperament and attention deficit hyperactivity disorder: the development of a multiple pathway model. J Clin Child Adolesc Psychol. 2004; 33(1):42-53.
Prior M., Smart D., Sanson A., Pedlow R., Oberklaid F. Transient versus stable behavior problems in a normative sample: infancy to school age. J Pediatr Psychol. 1992; 17(4):423-43.
Spranger, M., Schwab, S., Desiderato, S., Bonmann, E., Krieger, D., &; Fandrey, J. Manganese augments nitric oxide synthesis in murine astrocytes.. a new pathogenetic mechanism in manganism. EXPERIMENTAL NEUROLOGY 1998; 149: 277-283.
Su, F. C., Liao, H. F., Hwang, Y. H., Hsieh, W. S., Wu, H. C., Jeng, S. F., Su, Y. N., Chen, P. C. In utero exposure to manganese and psychomotor development at the age of six months. Journal of Occupational Safety and Health 2007; 15: 204-217.
Surya K. K., Robert B. S., &; Kales, S. N. Lead encephalopathy due to traditional medicines. Curr Drug Saf 2008; 3(1): 54-59.
Tsou, K. S., Ju, S. H., Chen, M. Y., Li, S. I., &; Hsu, C. C. A preliminary study of the temperamental characteristics of toddlers. Taiwanese Journal of Psychiatry 1987; 1: 123-133.
Weiss, S. J., Jonn-Seed, M. S., &; Wilson, P. The temperament of pre-term, low birth weight infants and its potential biological substrates. Res Nurs Health 2004; 27(6): 392-402.
Wright, R. O., Amarasiriwardena, C., Woolf, A. D., Jim, R., &; Bellinger, D. C. Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 2006; 27(2): 210-216.
Zheng W., Ren S., &; Graziano J. H. Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Research 1998; 799(2): 334-342.
Zota, A. R., Ettinger, A. S., Bouchard, M., Amarasiriwardena, C. J., Schwartz, J., Hu, H., &; Wright, R. O. Maternal blood manganese levels and infant birth weight. Epidemiology 2009; 20(3): 367-373.

Part II.
Anari M. R., Bakhtiar R., Zhu B., Huskey S., Franklin R. B., Evans D. C. Derivatization of Ethinylestradiol with Dansyl Chloride To Enhance Electrospray Ionization: Application in Trace Analysis of Ethinylestradiol in Rhesus Monkey Plasma. Analytical chemistry 2001; 74: 4136-4144.
Bloom, M. S., Kim, D., Vom Saal, F. S., Taylor, J. A., Cheng, G., Lamb, J. D., &; Fujimoto, V. Y. Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil Steril 2011; 96(3): 672-677 e672.
Brian J. S., Bevra H. H. and Maureen M.. Metalloproteases, Vascular Remodeling and Atherothrombotic Syndromes. Nat. Rev. Rheumatol 2012; 8: 214–223.
Cao X. L., Corriveau J., Popovic S.. Levels of Bisphenol A in Canned Soft Drink Products in Canadian Markets. Journal of agricultural and food chemistry 2009; 57: 1307-1311.
Choi, H., Kim, J., Im, Y., Lee, S., &; Kim, Y. The association between some endocrine disruptors and hypospadias in biological samples. J Environ Sci Health A Tox Hazard Subst Environ Eng 2012; 47(13): 2173-2179.
Chou, W. C., Chen, J. L., Lin, C. F., Chen, Y. C., Shih, F. C., &; Chuang, C. Y. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan. Environ Health 2011; 10: 94.
O''Leary D. H., Polak J. F., Kronmal R. A., Manolio T. A., Burke G. L., Wolfson S. K. Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. The New England Journal of Medicine 1999; 340(1): 14-22.
Eisenmann, J. C., Katzmarzyk, P. T., Perusse, L., Tremblay, A., Despres, J. P., &; Bouchard, C. Aerobic fitness, body mass index, and CVD risk factors among adolescents: the Quebec family study. Int J Obes (Lond) 2005; 29(9): 1077-1083.
Fernandez, M. F., Arrebola, J. P., Taoufiki, J., Navalon, A., Ballesteros, O., Pulgar, R., . . . Olea, N. Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod Toxicol 2007; 24(2): 259-264.
Geens, T., Goeyens, L., &; Covaci, A. Are potential sources for human exposure to bisphenol-A overlooked? Int J Hyg Environ Health 2011; 214(5): 339-347.
Ning G., Bi Y., Wang T., Xu M., Xu Y., Huang Y., Li M., Li X., Wang W., Chen Y., Wu Y., Hou J., Song A., Liu Y., Lai S. Relationship of urinary bisphenol A concentration to risk for prevalent type 2 diabetes in Chineseadults: a cross-sectional analysis. Annals of Internal Medicine 2011; 155(6): 368-374.
Hennig, B., &; Chow, C. K. Lipid peroxidation and endothelial cell injury: implications in atherosclerosis. Free Radical Biology and Medicine 1988; 4(2): 99-106.
Hulthe, J., Wikstrand, J., Emanuelsson, H., Wiklund, O., de Feyter, P. J., &; Wendelhag, I. Atherosclerotic Changes in the Carotid Artery Bulb as Measured by B-Mode Ultrasound Are Associated With the Extent of Coronary Atherosclerosis. Stroke 1997; 28(6): 1189-1194.
Kang, J. H., Kondo, F., &; Katayama, Y. Human exposure to bisphenol A. Toxicology 2006; 226(2-3): 79-89.
Li M., Bi Y., Qi L., Wang T., Xu M., Huang Y., Xu Y., Chen Y., Lu J., Wang W., Ning G. Exposure to bisphenol A is associated with low-grade albuminuria in Chinese adults. Kidney Int 2012; 81(11): 1131-1139.
Li, Y., Burns, K. A., Arao, Y., Luh, C. J., &; Korach, K. S. Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor alpha and beta in vitro. Environ Health Perspect 2012; 120(7): 1029-1035.
Lien, G. W., Chen, C. Y., &; Wang, G. S. Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for determining estrogenic chemicals in water by liquid chromatography tandem mass spectrometry with chemical derivatizations. J Chromatogr A 2009; 1216(6): 956-966.
Lin C. Y., Lin L. Y., Wen T. W., Lien G. W., Chien K. L., Hsu S. H., Liao C. C., Sung F. C., Chen P. C., Su T. C. Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. Int J Cardiol 2013; 168(4): 3309-3316.
Lind, P. M., &; Lind, L. Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly. Atherosclerosis 2011; 218(1): 207-213.
Lopez-Espinosa M. J., Granada A., Araque P., Molina-Molina J. M., Puertollano M. C., Rivas A., Fern&;aacute;ndez M., Cerrillo I., Olea-Serrano M. F., L&;oacute;pez C., Olea N. Oestrogenicity of paper and cardboard extracts used as food containers. Food Additives &; Contaminants. 2007; 24(1): 95-102.
Luigi C., Nicola C., Elisabetta T., Carmen C., &; Grumetto, L. Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women. Biomedical Chromatography 2009; 23(11): 1186-1190.
Maragou N. C., Makri A., Lampi E. N., Thomaidis N. S., Koupparis M. A. Migration of bisphenol A from polycarbonate baby bottles under real use conditions. Food additives &; contaminants. Part A, Chemistry, analysis, control, exposure &; risk assessment. 2008; 25: 373-383.
Maserejian, N. N., Hauser, R., Tavares, M., Trachtenberg, F. L., Shrader, P., &; McKinlay, S. Dental composites and amalgam and physical development in children. J Dent Res 2012; 91(11): 1019-1025.
Melzer D., Gates P., Osborne N. J., Henley W. E., Cipelli R., Young A., Money C., McCormack P., Schofield P., Mosedale D., Grainger D., Galloway T. S. Urinary bisphenol a concentration and angiography-defined coronary artery stenosis. PLoS One 2012; 7(8): e43378.
Melzer D., Osborne N. J., Henley W. E., Cipelli R., Young A., Money C., McCormack P., Luben R., Khaw K. T., Wareham N. J., Galloway T. S. Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 2012; 125(12): 1482-1490.
Melzer, D., Rice, N. E., Lewis, C., Henley, W. E., &; Galloway, T. S. Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One 2010; 5(1): e8673.
Morgan M. K., Jones P. A., Calafat A. M., Ye X., Croghan C. W., Chuang J. C., Wilson N. K., Clifton M. S., Figueroa Z., Sheldon L. S. Assessing the quantitative relationships between preschool children''s exposures to bisphenol A by route and urinary biomonitoring. Environ Sci Technol 2011; 45(12): 5309-5316.
Noonan GO, Ackerman LK, &; TH, Begley. Concentration of bisphenol A in highly consumed canned foods on the U.S. market. Journal of Agricultural Food Chemistry 2011; 59(13): 7178-7185.
Olsen, L., Lind, L., &; Lind, P. M. Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicol Environ Saf 2012; 80: 179-183.
Padmanabhan V., Siefert K., Ransom S., Johnson T., Pinkerton J., Anderson L., Tao L., Kannan K.. Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 2008; 28(4): 258-263.
RJ, Kavlock. Overview of endocrine disruptor research activity in the United States. Chemosphere 1999; 39: 1227-1236.
Rochester, J. R. Bisphenol A and human health: a review of the literature. Reprod Toxicol 2013; 42: 132-155.
Shankar, A., &; Teppala, S. Relationship between urinary bisphenol A levels and diabetes mellitus. J Clin Endocrinol Metab 2011; 96(12): 3822-3826.
Shen, Y., Xu, Q., Ren, M., Feng, X., Cai, Y., &; Gao, Y. Measurement of phenolic environmental estrogens in women with uterine leiomyoma. PLoS One 2013; 8(11): e79838.
Su, T. C., Lee, Y. T., Chou, S., Hwang, W. T., Chen, C. F., &; Wang, J. D. Twenty-four-hour ambulatory blood pressure and duration of hypertension as major determinants for intima-media thickness and atherosclerosis of carotid arteries. Atherosclerosis 2006; 184(1): 151-156.
Subbiah, M.T.R. Estrogen replacement therapy and cardioprotection: mechanisms and controversies. Brazilian Journal of Medical and Biological Research 2002; 35: 271-276.
Sugiura-Ogasawara, M., Ozaki, Y., Sonta, S., Makino, T., &; Suzumori, K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum Reprod 2005; 20(8): 2325-2329.
Takeuchi, T., &; Tsutsumi, O. Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun 2002; 291(1): 76-78.
Teppala, S., Madhavan, S., &; Shankar, A. Bisphenol A and Metabolic Syndrome: Results from NHANES. Int J Endocrinol 2012; 2012: 598180.
Tsai C. W., Kuo C. C., Wu C. F., Chien K. L., Wu V. C., Chen M. F., Sung F. C., Su T. C. Associations of renal vascular resistance with albuminuria in adolescents and young adults. Nephrol Dial Transplant 2011; 26(12): 3943-3949.
Wei J. N., Sung F. C., Lin C. C., Lin R. S., Chiang C. C., Chuang L. M. National surveillance for type 2 diabetes mellitus in Taiwanese children. JAMA 2003; 290: 1345-1350.
Zhao H. Y., Bi Y. F., Ma L. Y., Zhao L., Wang T. G., Zhang L. Z., Tao B., Sun L. H., Zhao Y. J., Wang W. Q., Li X. Y., Xu M. Y., Chen J. L., Ning G., Liu J. M. The effects of bisphenol A (BPA) exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in non-obese premenopausal women. Clin Biochem 2012; 45(18): 1602-1606.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊