訪客IP:34.204.173.45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:洪苙嘉
研究生(外文):Li-Jia Hong
論文名稱:使用黑麥草與高羊茅於柴油污染土壤之植生復育
論文名稱(外文):Phytoremediation of Diesel Contaminated Soils by Ryegrass (Lolium perenne L.) and Tall Fescue (Festuca arundinacea)
指導教授:張簡水紋張簡水紋引用關係王敏昭王敏昭引用關係
指導教授(外文):Shui-Wen Chang ChienMin-Chao Wang
口試委員:林浩潭
口試委員(外文):Haw-Tarn Lin
口試日期:2014-07-21
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系
學門:工程學門
學類:環境工程學類
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:118
中文關鍵詞:植生復育黑麥草高羊茅降解率水溶性酚類總菌落數生物濃縮因子
外文關鍵詞:PhytoremediationRyegrassTall FescueDegradationVanillic AcidMicrobial PopulationBioconcentration Factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:341
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
植生復育 (phytoremediation)能有效處理土壤有機污染物,且對環境友善之處理方法。本研究以玻璃盆栽箱 (15×15×25 cm)種植黑麥草 (Ryegrass)或高羊茅 (Tall Fescue)於柴油污染之土壤,種類包括紅壤及沖積土,並以石英砂作為栽培基質之對照組,分為添加及未添加 5%堆肥之處理。以土壤表面劃分九宮格,分上中下層,於中心點添加柴油,使柴油 (TPH)濃度為 10000 mg kg-1,模擬貯油槽破裂之土壤污染場址之植生復育,進行四重複分析,使每一盆有 27種不同柴油濃度範圍進行觀察與分析。種植60天後未添加 5%堆肥地上部柴油濃度為 0.01-0.86 mg kg-1,地下部 0.01-0.96 mg kg-1,而添加5%堆肥後可提昇地上部柴油濃度至 0.04-0.88 mg kg-1,地下部 0.01-1.79 mg kg-1,而其生物濃縮因子 (Bioconcentration factor, BCF),未添加5%堆肥地上部為 0.00001-0.00026,地下部為 0.00001-0.0024,而添加5%堆肥後升高地上部 BCF值至 0.000024-0.00028,地下部降低至 0.00004-0.0006。菌根之生長黑麥草菌根較細而高羊茅較粗,生長狀況高羊茅優於黑麥草,酸性土壤會抑制菌根之生長,而添加堆肥有助於菌根之生長。未種植草種柴油污染土壤之自然降解 (natural degradation) 60天後柴油污染土壤能達到 5-20%之降解率。柴油污染土壤種植草種可達到 10-50%之降解率。柴油污染土壤添加土重 5%之堆肥再種植黑麥草或高羊茅,可提昇柴油污染土壤之柴油降解率,可達 30-80%。總菌落數隨著土壤柴油污染濃度增加而增加,未添加堆肥且未種植草種菌落數為 1×103-2×105 CFU g-1,未添加種植草種為 4×103-4.2×105 CFU g-1,添加並種植為 6×103-8.8×105 CFU g-1 。根圈土壤水溶性酚類香草酸 (vanillic acid)也是隨者土壤柴油污染濃度增加而增加,未添加堆肥且未種植草種之柴油污染土壤中水溶性酚類香草酸濃度為 0.06-0.6 μg vanillic acid g-1 dry soil,未添加堆肥但種植草種為 0.13-3.5 μg vanillic acid g-1 dry soil,添加堆肥並種植草種為 1.5-7.5 μg vanillic acid g-1 dry soil。由相關試驗發現種植高羊茅與黑麥草能夠提升柴油污染土壤之降解率,而高羊茅對柴油污染土壤有較高的耐受程度。沖積土之土壤環境較適合黑麥草與高羊茅之生長,而紅壤為強酸性土壤,植生質量紅壤較沖積土者低,石英砂作為對照組,生長狀況較差植體對柴油之累積量沖積土大於紅壤,紅壤大於石英砂。但是BCF中可看出降解率主要依靠根際降解,而非植物累積,因為土壤降解率越高,其BCF值相對降低,表示植體累積效率不及土壤降解效果。添加堆肥能夠提高植生質量與植體內之柴油濃度,同時增加根圈土壤之總菌落數與水溶性酚類香草酸之濃度,進而提高土壤柴油之降解率。
Phytoremediation is a method used to handle the organic pollutants effectively and friendly. This study simulated the ground storage tank breaking and diesel oil leaked in soil. It uses the red soil, alluvial and quartz (contrast) as contaminant soil amended with or without compost (5%) and place in glass case as the model (15×15×25 cm). The model soil divided in to nine components in horizon, and parted top, middle and bottom layer in depth. It was added the concentration of 10000 mg kg-1 (TPH) of diesel in the core of model. It was disperse in soil and cause 27 different concentrations of samples. The model used ryegrass and tall fescue as the plant of phytoremediation. After the model planted grass period of 60 days. In the soil without compost treatment, ryegrass and tall fescue plant diesel concentration involve the range of 0.01-0.86 in shoot, and 0.01-0.96 in root. Without compost treatment in soil, the range was 0.04-0.88 in shoot, and 0.01-1.79 in root. It cause the bioconcentration was 0.00001-0.00028 in shoot and 0.00001-0.0024 in root without compost treatment. With compost treatment was promoted to 0.00024-0.00028, but demoted to 0.00004-0.0006. Without compost treatment and unplanted of diesel contaminant soil degradation was 5-20%, the soil microbial population was 1×103-2×105 CFU g-1, and the root of soluble vanillic acid concentration was 0.06-0.6 μg vanillic acid g-1 dry soil. The endophyte in tall fascue was more stronger than ryegrass.Limit in acid and non-nutrient environment.It’s benefit toendophyte to grow efficiency with compost treatment.The nature degradation only between 5-20%.Without compost treatment but plant the grasses promoted to 10-50% of degradation, the soil microbial population was 4×103-4.2×105 CFU g-1 , and the root of soluble vanillic acid concentration was 0.13-0.35 μg vanillic acid g-1 dry soil. With compost treatment and plant promoted to 30-80%, the soil microbial population was 6×103-8.8×105 CFU g-1 , and the root of soluble vanillic acid concentration was 1.5-7.5 μg vanillic acid g-1 dry soil. The results indicate that plant ryegrass and tall fescue can degrade the diesel contaminant soil significant. Tall fescue is better than ryegrass of tolerance, and plant mass of tall fescue was higher. The phytoaccumulation was not significant than rhizosphere and caused bioconcentration factor was limit. With compost treatment can increase the diesel contaminant soil degradation, soil microbial population and the root of soluble vanillic acid concentration. The same result was happened in the group of soil type. It was the best of alluvial and red soil was better than quartz.
摘要 ..........................I
Abstract .........................III
致謝 ..............................V
第一章、前言...............................1
第二章、 文獻回顧...............................3
2-1 石油碳氫化合物...............................3
2-1-1 石油污染的案例...............................3
2-1-2 國內目前油品污染場址分布...............................3
2-2污染來源與污染物性質...............................4
2-2-1國內加油站之油品洩漏...............................4
2-2-2石油碳氫化合物的組成...............................5
2-2-3石油碳氫化合物污染過程...............................6
2-3植生復育方法介紹...............................9
2-3-1土壤污染處理方法...............................9
2-3-1植生復育方法特性...............................10
2-3-2植生復育運作機制...............................11
2-3-3植生復育案例...............................13
第三章、 材料與方法...............................15
3-1 研究材料與設備...............................15
3-1-1供試土壤...............................15
3-1-2供試作物...............................16
3-2-2 人工污染柴油土壤之配製...............................23
3-2-3 土壤中柴油之累積...............................24
3-2-4 植體中柴油之累積...............................27
3-2-5 土壤中水溶性酚...............................27
3-2-6 土壤中之總菌落數(CFU)分析...............................27
3-2-7 生育調查...............................28
3-3 生物濃縮因子BCF值計算...............................28
3-4 根系菌根拍攝...............................28
第四章、 結果與討論...............................29
4-1 研究材料與設備...............................29
4-1-1植物生育調查...............................29
4-1-2土壤中柴油之初始濃度...............................37
4-1-4石英砂、紅壤及沖積土中柴油之降解率...............................46
4-1-6植生降解柴油土壤之總菌落數...............................56
4-1-5土壤中水溶性酚類...............................65
4-1-6植體菌根之生長...............................73
4-1-8 土壤降解率與各項因子之探討...............................84
第五章 結論與建議...............................86
5.1 結論...............................86
5.2 建議...............................88
第六章 參考文獻...............................89
附錄...............................95

圖目錄
圖1-1研究架構圖...............................2
圖2-1貯油槽洩漏示意圖 ...............................6
圖2-2植生復育運行機制 ...............................11
圖3-1未添加5%堆肥種植紅壤黑麥草 圖3-2未添加5%堆肥種植紅壤高羊茅...............................17
圖3-3添加5%堆肥種植紅壤黑麥草 圖3-4添加5%堆肥種植紅壤高羊茅...............................17
表3-3所使用之材料與藥品...............................19
圖3-5 模擬受柴油污染盆栽示意圖...............................23
圖3-4 標準品滯留時間...............................26
圖3-5 土壤樣品萃取之柴油滯留時間...............................26
圖4-1石英砂、紅壤及沖積土添加及未添加5%堆肥種植黑麥草60天後株高。...............................31
圖4-2石英砂、紅壤及沖積土添加及未添加5%堆肥種植高羊茅60天後株高。...............................31
圖4-3不同處理沖積土種植黑麥草60天後(A)上層土(B)中層土(C)下層土柴油降解率。...............................48
圖4-4不同處理沖積土種植高羊茅60天後(A)上層土(B)中層土(C)下層土柴油降解率。...............................49
圖4-5不同處理紅壤種植黑麥草60天後(A)上層土(B)中層土(C)下層土柴油降解率。...............................51
圖4-6不同處理紅壤種植高羊茅60天後(A)上層土(B)中層土(C)下層土柴油降解率。...............................52
圖4-7不同處理石英砂種植黑麥草60天後(A)上層土(B)中層土(C)下層土柴油降解率。...............................54
圖4-8不同處理石英砂種植高羊茅60天後(A)上層土(B)中層土(C)下層土柴油降解率。...............................55
圖4-9不同處理沖積土種植黑麥草60天後(A)上層土(B)中層土(C)下層土總菌落數。...............................57
圖4-10不同處理沖積土種植高羊茅60天後(A)上層土(B)中層土(C)下層土總菌落數。...............................58
圖4-11不同處理紅壤種植黑麥草60天後(A)上層土(B)中層土(C)下層土總菌落數。...............................60
圖4-12不同處理紅壤種植高羊茅60天後(A)上層土(B)中層土(C)下層土總菌落數。...............................61
圖4-13不同處理石英砂種植黑麥草60天後(A)上層土(B)中層土(C)下層土總菌落數。...............................63
圖4-14不同處理石英砂種植高羊茅60天後(A)上層土(B)中層土(C)下層土總菌落數。...............................64
圖4-15不同處理沖積土種植黑麥草60天後(A)上層土(B)中層土(C)下層土水溶性酚類。...............................67
圖4-16不同處理沖積土種植高羊茅60天後(A)上層土(B)中層土(C)下層土水溶性酚類。...............................68
圖4-17不同處理紅壤種植黑麥草60天後(A)上層土(B)中層土(C)下層土水溶性酚類。...............................69
圖4-18不同處理紅壤種植高羊茅60天後(A)上層土(B)中層土(C)下層土水溶性酚類。...............................70
圖4-19不同處理石英砂種植黑麥草60天後(A)上層土(B)中層土(C)下層土水溶性酚類。...............................71
圖4-20不同處理石英砂種植高羊茅60天後(A)上層土(B)中層土(C)下層土水溶性酚類。...............................72
圖4-21紅壤種植黑麥草與高羊茅60天後,菌根生長狀況...............................74
圖4-22沖積土種植黑麥草與高羊茅60天後,菌根生長狀況...............................74
圖4-23石英砂種植黑麥草與高羊茅60天後,菌根生長狀況...............................75
圖4-24紅壤種植黑麥草與高羊茅60天後,菌根生長狀況...............................75
圖4-25沖積土與高羊茅60天後,菌根生長狀況...............................76
圖4-26石英砂種植黑麥草與高羊茅60天後,菌根生長狀況...............................76
圖4-27未添加5%堆肥(A)紅壤(B)沖積土(C)石英砂種植黑麥草60天後之植體BCF值。...............................79
圖4-28添加5%堆肥(A)紅壤(B)沖積土(C)石英砂種植黑麥草60天後之植體BCF值。...............................80
圖4-29未添加5%堆肥(A)紅壤(B)沖積土(C)石英砂種植高羊茅60天後之植體BCF值...............................82
圖4-30添加5%堆肥(A)紅壤(B)沖積土(C)石英砂種植高羊茅60天後之植體BCF值。...............................83

表目錄
表2-1國內加油站油品污染場址分布(資料來源:行政院環保署,2013)...............................3
表2-2柴油的物化特性...............................5
表2-3土壤污染管制標準...............................8
表3-1供試土壤之基本特性分...............................18
表3-2所使用之儀器廠牌與型號...............................19
表3-4 微波萃取加熱程式設定參數。...............................24
表3-5 GC-FID儀器條件...............................25
表4-1紅壤、沖積土、石英砂未添加5%堆肥種植黑麥草60天後鮮重...............................33
表4-2紅壤、沖積土、石英砂未添加5%堆肥種植黑麥草60天後乾重...............................33
表4-3紅壤、沖積土、石英砂添加5%堆肥種植黑麥草60天後鮮重...............................34
表4-5紅壤、沖積土、石英砂未添加5%堆肥種植高羊茅60天後鮮重...............................35
表4-6紅壤、沖積土、石英砂未添加5%堆肥種植高羊茅60天後乾重...............................35
表4-7紅壤、沖積土、石英砂添加5%堆肥種植高羊茅60天後鮮重...............................36
表4-8紅壤、沖積土、石英砂添加5%堆肥種植高羊茅60天後乾重...............................36
表4-9未添加5%堆肥上層石英砂、紅壤及沖積土柴油之初始濃度...............................38
表4-10未添加5%堆肥中層石英砂、紅壤及沖積土柴油之初始濃度。...............................38
表4-11未添加5%堆肥下層石英砂、紅壤及沖積土柴油之初始濃度...............................39
表4-12添加5%堆肥上層石英砂、紅壤及沖積土柴油之初始濃度...............................39
表4-13添加5%堆肥中層石英砂、紅壤及沖積土柴油之初始濃度...............................40
表4-14添加5%堆肥下層石英砂、紅壤及沖積土柴油之初始濃度...............................40
表4-15黑麥草未添加5%堆肥地上部之柴油含量...............................42
表4-16黑麥草未添加5%堆肥地下部之柴油含量...............................42
表4-17黑麥草添加5%堆肥地上部之柴油含量...............................43
表4-18黑麥草添加5%堆肥地下部之柴油含量...............................43
表4-19高羊茅未添加5%堆肥地上部之柴油含量...............................45
表4-20高羊茅未添加5%堆肥地下部之柴油含量...............................45
表4-21高羊茅添加5%堆肥地上部之柴油含量...............................46
表4-22高羊茅添加5%堆肥地下部之柴油含量...............................46

台灣中油股份有限公司,石油辭典,超級柴油 MSDS (GHS)。
行政院環境保護署,土壤中陽離子交換容量-醋酸鈉法,NIEA S202.60A。
行政院環境保護署,土壤污染監測標準,2012。
行政院環境保護署,土壤及地下水污染整治網,2013。
行政院環境保護署,油品類儲槽系統污染調查及查證參考作業手冊,2006。
經濟部能源局,加油站經營實體統計表,2014。
趙映琇,「石油分解微生物利用於土壤油污染之生物復育」,國立雲林科技大學環境與安全工程系,雲林 (2005)。
Adam, G. and Duncan, H., “Influence of diesel fuel on seed germination. Environmental Pollution.” Vol. 120, pp. 363-370 (2002).
Aprill, W., Sims, R.C., “Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil.” Chemosphere Vol. 20, pp. 253-265 (1990).
Bamforth, S. and Singleton, I., “Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions.” Journal of Chemical Technology and Biotechnology Vol. 80, pp. 723-736 (2005).
Betts, K., “Phytoremediation project taking up TCE.” Environmental Science and Technology Vol. 31, No. 8, pp. 347 (1997).
Chaîneau, C.H., Morel, J.L. and Oudot, J., “Phytotoxicity and Plant Uptake of Fuel Oil Hydrocarbons.” Journal of Environmental Quality Vol. 26, pp. 1478 (1997).
Chairman, S.K. “Remediation and nature and landscape protection services.” Investigation No. 332-454. USITC Publication 3727 (2004).
Cheema, S.A., Khana, M.I., Tanga, X., Zhanga, C., Shena, C., Malikb, Z., Ali, S., Yanga, J., Shena, K., Chena, X., Chena, Y.. “Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea).” Journal of Hazardous Materials 166, p.p. 1226–1231 (2009).
Cunningham, S. and Berti, W., “Remediation of contaminated soils with green plants: an overview.” In vitro Cellular Development Biology - Plant Vol. 29, pp. 207-212 (1993).
Cunningham, S.D. and Ow, D.W., “Promises and prospects of phytoremediation.” Plant Physiology Vol. 110 (3), pp. 715-719 (1996).
Frick, C. and Farrell, R. and Germida, J., “Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites.” Petroleum Technology Alliance of Canada (PTAC) (1990).
Germaine, K.J., Keogh, E., Ryan, D. and Dowling, D.N., “Bacterialendophyte-mediated naphthalene phytoprotection and phytoremediation.” FEMS Microbiology Letters Vol. 296, Issue 2, pp. 226-234 (2009).
Gunther, T., Dornberger, U. and Fritsche, W., “Effects of ryegrass on biodegradation of hydrocarbons in soil.” Chemosphere Vol. 33 (2), pp. 203-215(1996).
Gao, Y.Z., Zhu, L.Z., “Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils” Chemosphere, Vol. 55, pp. 1169-1178 (2004).
Huang, X.D., Yousef, E.A., Gurska, J., Glick B.R., Greenberg B.M., “A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils.” Microchemical journal vol. 81, no1, pp. 139-147 (2005).
Hutchinson, S.L., Schwab, A.P. and Banks, M.K., “Biodegradation of petroleum hydrocarbons in the rhizosphere.” Phytoremediation: Transformation and control of contaminants, pp. 355-386 (2003).
Hutchinson, S.L., Schwab, A.P., Banks M.K., “Phytoremediation of aged petroleum sludge: effect of irrigation techniques and scheduling.” Journal of Environmental Quality Vol. 30, pp. 1516-1522 (2001).
Jorgensen, K., “In situ bioremediation.” Advances in Applied Microbiology Vol. 61, pp. 285-305 (2007).
Kemp, H., Bourke, C., Wheatley, W., “Endophytes of perennial ryegrass and all fescue.” State of New South Wales through NSW Department of Primary Industries primefact 535 (2007).
Montoya, T., Kinsella, J.V., Nelson, M.J., “In Situ Biodegradation of TCE Contaminated Groundwater.” Environmental Progress Vol. 9 No. 3, pp. 190-196 (1990).
Komisar, S.J., Park, J., “Phytoremediation of diesel-contaminated soil using alfalfa.” In Situ and On-Site Bioremediation Symposium, New Orleans, LA, Vol. 3, pp. 331-336 (1997).
Kruger, E.L., Anderson, T.A. and Coats, J.R., “Phytoremediation of contaminated water and soil.” ACS Symposium Series 664, pp. 2–17 (1997).
Kuldau, G., Bacon, C., “Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses.” Biol. Control Vol. 46, pp. 57-71 (2008).
Lee, E. and Banks, M.K., “Bioremediation of petroleum contaminated soil using Vegetation: A microbial study.” Journal of Environmental Science and Health 28, pp. 2187-2198 (1993).
Lund, E., Christy, C., Drummond, P., Practical applications of soil electrical conductivity mapping. Proceedings of the 2nd European Conference on Precision Agriculture (1999).
Lynch, J.M., and Moffat, A.J., “Bioremediation - prospects for the future application of innovative applied biological research.” Annals of Applied Biology Vol. 146, pp. 217-221 (2005).
McLean, J.e., Bledsoe, B.E., “Behavior of Metals in Soils.” In Boulding, J.R. (Ed.), EPA Environmental Assessment Sourcebook, pp. 19-56 (1992).
Mezzari, M.P., Zimermann, D.M.H., Corseuil, H.X., Nogueira, A.V., “Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils.” Rev Bras Cienc Solo Vol. 35, pp. 2227-2236 (2011).
Newell, C.J., Acree S.D.,Ross, R.R. and Huling S.G., “Light Nonaqueous Phase Liquids” EPA/540/S-95/500, Ground Water Issue (1995).
Newman, L. and Reynolds, C., “Phytodegradation of organic compounds.” Current Opinion in Biotechnology Vol. 15, pp. 225-230 (2004).
Palmroth, M.R., Pichtel, J., Puhakka, J.A., “Phytoremediation of subarctic soil contaminated with diesel fuel.” Bioresource Technology 84, pp. 221-228 (2002).
Radwan, S.S., Sorkhoh, N.A., El-Nemr, I., “Oil biodegradation around roots.” Nature Vol. 376, pp. 302 (1995).
Reilley, K.A., Banks, M.K. and Schwab, A.P., “Organic chemicals in the environment:dissipation of polycyclic aromatic hydrocarbons in the rhizosphere.” Journal of Environmental Quality. Vol. 25, pp. 212-219 (1996).
Rosner, G., “Diesel fuel and exhaust emissions.” World Health Organisation, Agency for Toxic Substances and Disease Registry. Environmental Health Criteria 171 (1996).
Rhoades, J. D. “Soluble salts.” In A. L. Page et al (ed.) Methods of soil analysis, Part 2. 2nd ed. Agronomy Monograph no.9 p.167-179 (1982).
Saenger, P., “Managing marine environments.” Ocean & Coastal Management vol.17, no. 2, pp. 184-185 (1990).
Seslar, T., “Natural remedies.” Frontiers: The BP magazine of technology and innovation Issue 14, pp. 18-21 (2005).
Siciliano, S.D. and Germida, J.J., “Mechanisms of phytoremediation: biochemical andecological interactions between plants and bacteria.” Environmental Review. Vol. 6, pp. 65-79 (1998).
Sims, J.L., Sims, R.C., Zollinger, R.L. and Huling, S.G., “Bioremediation of contaminated soils.” Agron Monogr Vol.37, pp. 559-591 (1999).
Smith, A.R., Pryer, K.M., Schuettpelz, E., Korall, P., Schneider, H. and Wolf, P. G., “A classification for extant ferns.” Taxon 55 (3), pp. 705-731 (2006).
Smith, M., Flowers, T., Duncan, H. and Alder, J., “Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues.” Environmental Pollution Vol. 141, pp. 519-525 (2006).
Susarla, S., Medina, V.F. and McCutcheon, S.C., “Phytoremediation: an ecological solution to organic chemical contamination.” Ecol. Eng. Vol. 18, pp. 647-658 (2002).
Tang, J.C., Wang, R.G., Niu, X.W., Wang ,M., Chu H.R. and Zhou, Q.X., “Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors.” Biogeosciences Vol. 7, pp. 3961-3969 (2010).
Taylor, B.D., “Environment regulations place new responsibilities on property owners.” In E.J. Calabrese, and P.T. Kostecki (ed.) Contaminated Soils Vol. 2, pp. 3-7 (1990).
Tiessen, H., Bettany, J.R. and Stewart, J.W.B., “An improved method for the determination of carbon in soils and soil extracts by dry combustion.” Commuun. Soil Sci. Plant Anal. Vol. 12, pp. 211-218 (1981).
Trapp, S., Ucisik, A.S., Romano, D. and Larsen M., “The role of plants and bacteria in phytoremediation-kinetic aspects bioremediation of soils contaminated with aromatic compounds.” NATO science series IV Earth Environ. Sci. 76, pp. 41–49 (2007).
Van Beilen, J.B., Li, Z., Duetz, W.A., Smits, T.H.M. and Witholt, B., “Diversity of alkane hydroxylase systems in the environment.” Oil Gas Sci. Technol. Rev. IFP Vol. 58, pp. 427-440 (2003).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔