跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/05 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李依潔
研究生(外文):Yi-Chieh Li
論文名稱:在具有雙天線之雙向中繼網路中擁有全散度全速率之分散式類正交空時/空頻區塊編碼方法
論文名稱(外文):Full-Diversity and Full-Rate Distributed QOSTBC/QOSFBC in Two-Way Relay Networks with Two Antennas
指導教授:李志鵬李志鵬引用關係
指導教授(外文):Chih-Peng Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:83
中文關鍵詞:雙向中繼網路架構散度分散式類正交空時區塊編碼分散式類正交空頻區塊編碼相位旋轉
外文關鍵詞:DiversityPhase rotationTwo way relay networkDistributed quasi-orthogonal space time block code (D-QOSTBC)Distributed quasi-orthogonal space frequency block code (D-QOSFBC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在這個的研究裡,我們所考慮的是一個半雙工(Half Duplex)、中繼端採放大後前送(Amplify-and-Forward, AF)的雙向中繼網路 (Two-Way Relay Network) 架構,其中裡面包含了各擁有一根天線的兩個來源端(Source Node),以及各擁有兩根天線的兩個中繼端(Relay Node)。傳統的類正交空時區塊編碼(Quasi-Orthogonal Space-Time Block Code, QOSTBC)和類正交空頻區塊編碼(Quasi-Orthogonal Space-Frequency Block Code, QOSFBC)皆可以使用在這個架構中,但因為在某些非對角項元素上有非零值,所以沒辦法達到全散度(Full Diversity)的特性,此外,在目的端(Destination Node)必須使用複雜度較高的解碼器才能將訊號解出。在本篇研究中,我們提出一個可以同時達到全散度和全速度(Full Rate)的新分散式類正交空時區塊編碼(Distributed Quasi-Orthogonal Space-Time Block Code, D-QOSTBC)以及分散式類正交空頻區塊編碼(Distributed Quasi-Orthogonal Space-Frequency Block Code, D-QOSFBC)。我們提出在做完傳統的QOSTBC和QOSFBC後對中繼端上的兩根天線做相位旋轉,在第二個中繼端上,其中一根天線旋轉一個固定角度,另一根天線則是必須從已知的通道狀態資訊(Channel State Information, CSI)來求得旋轉角度。我們所提出的方法不僅可以同時達到全散度和全速度,而且在目的端可以使用低複雜度的解碼方式就將訊號解出。最後也會以模擬圖驗證我們所提出的D-QOSTBC和D-QOSFBC在位元錯誤率(Bit Error Rate, BER)上可以比傳統的QOSTBC和QOSFBC提升許多效能。
This thesis considers a half-duplex amplify-and-forward two-way relay network consisting of two single-antenna sources and two relays, each having two antennas. Both traditional quasi-orthogonal space-time block code (QOSTBC) and quasi-orthogonal space-frequency block code (QOSFBC) can be adopted in this system to obtain spatial, but not full, diversity gain. Additionally, the computational complexity of the receiver is extremely high. This thesis proposes a novel full-diversity and full-rate distributed QOSTBC/QOSFBC in a two-way two-antenna relay network. Following traditional QOSTBC/QOSFBC, a fixed phase rotation is performed on one of the two encoded signals at the second relay. Meanwhile, another encoded signal at the second relay is rotated by a given phase, which is generated from a known channel state information. Consequently, the proposed scheme offers two significant advantages. First, the proposed scheme can achieve both full diversity and full rate. Second, the computational complexity of the receiver is significantly reduced. Simulation results indicate that the bit-error-rate (BER) performance of the proposed distributed QOSTBC and QOSFBC is better than that of the traditional QOSTBC and QOSFBC because the former achieves full diversity.
第一章 導論+1
1.1 研究動機+2
1.2 論文架構+3
第二章 系統介紹 +4
2.1 雙向中繼網路架構+4
2.2 空時區塊編碼及空頻區塊編碼+7
2.2.1 正交空時和空頻區塊編碼+7
2.2.2 類正交空時區塊編碼+10
2.2.3 分散式空時和空頻區塊編碼+12
第三章 系統架構+14
3.1 傳統D-QOSTBC編碼方式+14
3.2 Gong提出的D-QOSTBC編碼方式+21
第四章 提出全散度全速度之編碼方式+27
4.1 全散度全速度之D-QOSTBC編碼方式+27
4.2 全散度全速度之D-QOSFBC編碼方式+43
4.3 中繼端轉兩根天線情況+51
第五章 模擬結果與討論+53
第六章 結論+61
參考文獻+62
中英對照表+69
縮寫對照表+73
[1]S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Aug. 1998.
[2]J. H. Jang, H. C. Won, and G. H. Im,“Cyclic prefixed single carrier transmission with SFBC over mobile wireless channels,”IEEE Signal Process. Lett., vol. 13, no. 5, pp. 261-264, May 2006.
[3]H. Jafarkhani,“A quasi-orthogonal space-time block code,”IEEE Trans. Commun., vol. 49, pp. 1-4, Jan. 2001.
[4]C. Papadias and G. Foschini,“Capacity-approaching space-time codes for system employing four transmitter antennas, IEEE Trans. Inf. Theory, vol. 49, no. 3, pp. 726-733, Mar. 2003.
[5]J. S. Jeong, S. B. Park, C. B. Jo, E. J. Yoo, and Y. S. Byun,“Quasi-orthogonal space-time block codes based on single symbol decoding for four transmit antennas,”ICACT 2009, Feb. 2009, pp. 15-18.
[6]C. E. Shannon, “Two-way communication channels,” in 4th Berkeley Symposium on Mathematical Statistics and Probability, 1961, pp. 611-644.
[7] M. Zeng, R. Zhang, and S. Cui, “On design of collaborative beamforming for two-way relay networks,” IEEE Signal Process., vol. 59, no. 5, pp. 2284-2295, May 2011.
[8] J. Zou, H. Luo, M. Tao, and R. Wang, “Joint source and relay optimization for non-regenerative MIMO two-way relay systems with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3305-3315, Sept. 2012.
[9]D. Zeng and S. Guo, “On the throughput of two-way relay networks using network coding,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 191-199, Jan. 2014.
[10]A. Bleetsas, H. Shin, and M. Z. Win, “Outage optimality of opportunistic amplify-and-forward relaying,” IEEE Commun. Lett., vol. 11, no. 3, pp.261-263, Mar. 2007.
[11]S. Atapattu, Y. Jing, and H. Jiang, “Relay selection schemes and performance analysis approximations for two-way networks,” IEEE Trans. Wireless Commun., vol. 61, no. 3, pp. 987-998, Mar. 2013.
[12]A. Bletsas, H. Shin, and M. Z. Win, “Cooperative communications with outage-optimal opportunistic relaying,” IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 3450-3460, Sep. 2007.
[13]T.-T. Duy and H.-Y. Kong, “Exact outage probability of cognitive two-way relaying scheme with opportunistic relay selection under interference constraint,” IET Commun., vol. 6, no. 16, pp. 2750-2759, Nov. 2012.
[14]C.-W. Huang, T.-H. Chang, X. Zhou, andY.-W. Peter Hong, “Two-way training for discriminatory channel estimation in wireless MIMO systems” IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2724-2737, May 2013.
[15]C. Wang, T. C.-K. Liu, and X. Dong, “Impact of channel estimation error on theperformance of amplify-and-forwardtwo-way relaying” IEEE Trans. Veh. Technol., vol. 61, no. 3, pp. 1197-1207, Mar. 2013.
[16]F. Gao, R. Zhang, and Y.-C. Liang, “Optimal channel estimation and training design for two-way relay networks,” IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3024-3033, Oct. 2009.
[17]F.-K. Gong, J.-K. Zhang, and J.-H. Ge, “Distributed concatenated Alamouti codes for two-way relaying networks,” IEEE Wireless Commun. Lett., vol. 1, no. 3, pp. 197–200, June 2012.
[18] F. Gao, T. Cui, and A. Nallanathan, “Optimal training design for channel estimation in decode-and-forward relay networks with individual and total power constraints,” IEEE Trans. Signal Process., vol. 56, no. 12, pp. 5937-5949, Dec. 2008.
[19]F. Gao, T. Cui, and A. Nallanathan, “On channel estimation and optimal training design for amplifyand forward relay network,” IEEE Trans. Wireless Commun., vol. 7, no.5, pp. 1907-1916, May 2008.
[20]Y. Jing and H. Jafarkhani, “Using orthogonal and quasi-orthogonal designs in wireless relay networks,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4106–4118, Nov. 2007.
[21]Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3524–3536, Dec. 2006.
[22] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag., vol. 40, no. 4, pp. 58-66, Apr. 2002.
[23] N. Benvenuto and S. Tomasin, “On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter,” IEEE Trans. Commun., vol. 50, no. 6, pp. 947-955, June 2002.
[24] A. Gusmao, R. Dinis, and N. Esteves, “On frequency-domain equalization and diversity combining for broadband wireless communications,” IEEE Trans. Commun., vol. 51, no. 7, pp. 1029-1033, July 2003.
[25] K. Takeda, H. Tomeba, and F. Adachi, “Joint Tomlinson-Harashima precoding and frequency-domain equalization for broadband single-carrier transmission,” IEICE Trans. Commun., vol. E91-B, no. 1, pp. 258-266, Jan. 2008.
[26] K. Takeda and F. Adachi, “Bit error rate analysis of DS-CDMA with joint frequency-domain equalization and antenna diversity combining,” IEICE Trans. Commun., vol. E87-B, no. 10, pp. 2991-3002, Oct. 2004.
[27] F. Adachi, T. Obara, and T. Yamamoto, “Capacity and BER performance considerations on single-carrier frequency-domain equalization,” in Proc. the 8th ICICS, Singapore, Dec. 2011, pp. 1-5.
[28]C.-P. Li, S.-H. Wang, and K.-C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM systems,” IEEE Trans. Commun., vol. 60, issue 6, pp. 1712-1718, June 2012.
[29]W.-C. Huang, C.-P. Li, and H.-J. Li, “A computationally efficient DFT scheme for applications with a subset of non-zero inputs,” IEEE Signal Process. Lett., vol. 15, pp. 206-208, 2008.
[30]W.-W. Hu, C.-P. Li, and J.-C. Chen, “Peak power reduction for pilot-aided OFDM systems with semi-blind detection,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1056-1059, July 2012.
[31] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity— part I: system description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.
[32] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity— part II: implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.
[33] C. E. Shannon, “Two-way communication channels,” in 4th Berkeley Symposium on Mathematical Statistics and Probability, 1961, pp. 611-644.
[34] T. J. Oechtering, C. Schnurr, I. Bjelakovic, and H. Boche, “Broadcast capacity region of two-phase bidirectional relaying,” IEEE Trans. Inf. Theory,vol. 54, no. 1, pp. 454-458, Jan. 2008.
[35] R. Vaze and R. W. Heath, “On the capacity and diversity-multiplexing tradeoff
of the two-way relay channel,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp.4219-4234, July 2011.
[36]W.-C. Huang, C.-P. Li, and H.-J. Li, “Optimal pilot sequence design for channel estimation in CDD-OFDM systems,” IEEE Trans. Wireless Commun., vol. 11, no. 11, pp. 4006-4016, Nov. 2012.
[37] W.-C. Huang, C.-P. Li, and H.-J. Li, “On the power allocation and system capacity of OFDM systems using superimposed training schemes,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1731-1740, May 2009.
[38] F.-K. Gong, J.-K. Zhang, and J.-H. Ge, “Novel distributed quasi-orthogonal space-time block codes for two-way two-antenna relay networks,” IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4338-4349, Sep. 2013.
[39] Y. Jing and H. Jafarkhani, “Using orthogonal and quasi-orthogonal designs in wireless relay networks,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4106–4118, Nov. 2007.
[40] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3524–3536, Dec. 2006.
[41] J. Harshan and B. S. Rajan, “Co-ordinate interleaved distributed space time coding for two-antenna-relays networks,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1783–1791, Apr. 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top