跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/05 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃國閔
研究生(外文):Guo-min Huang
論文名稱:複合數長度的完美高斯整數序列設計與其在實體層安全之應用
論文名稱(外文):Perfect Gaussian Integer Sequences of Composite Length andTheir Applications in Physical Layer Security
指導教授:李志鵬李志鵬引用關係
指導教授(外文):Chih-Peng Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:76
中文關鍵詞:稀疏完美高斯整數序列高斯整數完美序列週期性自相關函數基底序列週期性交相關函數實體層安全
外文關鍵詞:periodic auto-correlation functionsparse perfect Gaussian integer sequencebase sequencesperiodic cross-correlation functionphysical layer securityGaussian integerperfect sequence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
高斯整數(Gaussian Integer)是一個實部與虛部皆為整數的複數,而完美序列(Perfect Sequence)是指具有理想的週期性自相關函數(Periodic Auto-Correlation
Function, PACF)。本篇論文針對複合數長度的稀疏完美高斯整數序列(Sparse Perfect Gaussian Integer Sequence, SPGIS)提出建構之方法,其不但具備了理想的
PACF 和元素值大部分為零之外,非零值皆為高斯整數。若序列長度為N=PQ,在P、Q皆為整數且大於1的情況下,SPGIS是透過P個基底序列(Base Sequences),分別使用相對應的大小參數和循環位移(Cyclic Shift)參數線性組合產生;當中的大小參數皆為等振幅(Amplitude)的高斯整數,且每個基底序列皆有P 個非零值。本文也會使用建構SPGIS 的方法,將相同長度的兩相異SPGIS,利用週期性交相關函數(Periodic Cross-Correlation Function, PCCF)仍為SPGIS之特性,產生出更多的SPGIS。最後會將SPGIS應用在實體層安全(Physical Layer Security)上,建立能不被竊聽的安全性架構。
A Gaussian integer is a complex number whose real and imaginary parts are both integers. A sequence is defined as perfect if and only if it has an ideal periodic auto-correlation function. This thesis proposes a method to construct a sparse perfect Gaussian integer sequence (SPGIS) of composite length in which most of the sequence elements are zero. The proposed SPGISs are obtained by linearly combining P base sequences or their cyclic-shift equivalents by using nonzero Gaussian integer coefficients of equal magnitudes, in which the sequence length is N=PQ, where P and Q are both positive integers, and P, Q >1. Each base sequence consists of P nonzero
elements. The mathematical expression of the periodic cross-correlation function of any two proposed SPGISs of the same length is also a SPGIS. Consequently, this characteristic can be adopted to increase the number of proposed SPGISs.
Furthermore, an application of the proposed SPGIS is presented in this thesis for physical layer security to prevent eavesdroppers.
第一章 導論+1
1.1 研究動機+2
1.2 論文架構+3
第二章 複合數長度之稀疏完美高斯整數序列(SPGISs)設計+4
2.1 完美序列介紹+4
2.2 基底序列+5
2.3 SPGIS序列之結構+6
2.4 SPGIS的延伸+12
2.4.1 週期性交相關函數+12
2.4.2 新SPGISs+13
第三章 安全性架構+17
3.1 系統模型+17
3.2 安全性架構設計+18
3.2.1 建立私密鑰匙的方法+18
3.2.2 訊息交換流程+20
3.3 通道估測的方法+23
3.3.1估測步驟1+23
3.3.2估測步驟2+28
3.3.3估測步驟3+32
3.3.4估測步驟4+36
3.3.5估測步驟5+39
3.3.6估測步驟6+44
3.4 安全性說明+50
第四章 模擬結果+53
4.1 MSE 比較+53
4.2 BER 比較+55
第五章 結論+58
參考文獻+59
中英文對照表+63
英文縮寫對照表+66
[1]R. L. Frank and S. A. Zadoff, “Phase shift pulse codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. 8, no. 6, pp. 381–382, Oct. 1962.
[2]D. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 531–532, July 1972.
[3]N. Y. Yu and G. Gong, “New binary sequences with optimal autocorrelation magnitude,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4771–4779, Oct. 2008.
[4]Y. Tsai, G. Zhang, D. Grieco, F. Ozluturk, and X. Wang, “Cell search in 3GPP long term evolution systems,” IEEE Veh. Technol. Mag., vol. 2, no. 2, pp. 23–29, June 2007.
[5]U. Lambrette, M. Speth, and H. Meyr, “OFDM burst frequency synchronization by single carrier training data,” IEEE Commun. Lett., vol. 1, no. 2, pp. 46–48, Mar. 1997.
[6]A. Milewski, “Periodic sequences with optimal properties for channel estimation and fast start-up equalization,” IBM J. Research and Develop., vol. 27, no. 5, pp. 426–431, Sep. 1983.
[7]W.-C. Huang, C.-H. Pan, C.-P. Li, and H.-J. Li, “Subspace-based semi-blind channel estimation in uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 56, no. 1, pp. 58–65, Mar. 2010.
[8]J. Tao, J. Wu, and C. Xiao, “Estimation of channel transfer function and carrier frequency offset for OFDM systems with phase noise,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 4380–4387, Oct. 2009.
[9]C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[10]S. U. H. Qureshi, “Fast start-up equalization with period training sequences,” IEEE Trans. Inf. Theory, vol. 23, no. 4, pp. 553–563, Sep. 1977.
[11]A. J. Viterbi, CDMA: principles of spread spectrum communication: Addison-Wesley, 1995.
[12]C.-P. Li and W.-C. Huang, “A constructive representation for the Fourier dual of the Zadoff- Chu sequences,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4221–4224, Nov. 2007.
[13]W.-W. Hu, S.-H. Wang, and C.-P. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6074–6079, Nov. 2012.
[14]Y. Yang, X. Tang, and Z. Zhou, “Perfect Gaussian integer sequences of odd prime length,” IEEE Signal Process. Lett., vol. 19, no. 10, pp. 615–618, Oct. 2012.
[15]C. Sperandio and P. Flikkema, “Wireless physical-layer security via transmit precoding over dispersive channels: optimum linear eavesdropping,” Proc. MILCOM 2002, vol. 2, pp. 1113–1117, Oct. 2002.
[16]X. Li and E. Ratazzi, “MIMO transmissions with information-theoretic secrecy for secret-key agreement in wireless networks,” IEEE MILCOM 2005, vol. 3, pp. 1353–1359, Oct. 2005.
[17]Y. Hwang and H. Papadopoulos, “Physical-layer secrecy in AWGN via a class of chaotic DS/SS systems: analysis and design,” IEEE Trans. Signal Process., vol. 52, no. 9, pp. 2637–2649, Sep. 2004.
[18]G. Noubir, “On connectivity in ad hoc network under jamming using directional antennas and mobility,” IEEE MILCOM 2004, vol. 2, pp. 54–62, Nov. 2004.
[19]S. Goel and R. Negi, “Secret communication in presence of colluding eavesdroppers,” IEEE MILCOM 2005, vol. 3, pp. 1501–1506, Oct. 2005.
[20]W.-C. Huang, C.-P. Li, and H.-J. Li, “Optimal pilot sequence design for channel estimation in CDD-OFDM systems,” IEEE Trans. on Wireless Commun., vol. 11, no. 11, pp. 4006–4016, Nov. 2012.
[21]Y.-C. Hung and S.-H. Tsai, “PAPR analysis and mitigation algorithms for beamforming MIMO OFDM systems,” IEEE Trans. on Wireless Commun., vol. 13, no. 5, pp. 2588–2600, May 2014.
[22]S.-H. Wang and C.-P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Process. Lett., vol. 16, no. 11, pp. 941–944, Nov. 2009.
[23]W.-C. Huang, C.-P. Li, and H.-J. Li, “An investigation into the noise variance and the SNR estimators in imperfectly-synchronized OFDM systems,” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp. 1159–1167, Mar. 2010.
[24]P. Cheng, Z. Zhang, J. Li, and P. Qiu, “A Study on cell search algorithms for IEEE 802.16e OFDMA systems,” Proc. IEEE WCNC, pp. 1850–1855, Mar. 2007.
[25]G. Faria et al., “DVB-H: digital broadcast services to handheld devices,” Proc. IEEE, vol. 94, no. 1, pp. 194-209, Jan. 2006.
[26]Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[27]Physical channels and modulation (Release 8), 3GPP TSG PAN TS 36.211 V8.3.0., May 2008. Available: http://www.3gpp.org/
[28]LTE physical payer - general description (Release 8), Nov. 2007. 3GPP TSG PAN TS TS 36.201 V8.1.0. Available: http://www.3gpp.org/
[29]O. Edfors, M. Sandell, J.-J. Van de Beek, S. K. Wilson, and P. O. Borjesson, “OFDM channel estimation by singular value decomposition,” IEEE Trans. Commun., vol. 46, no. 7, pp. 931–939, July 1998.
[30]M. Noh, Y. Lee, and H. Park, “Low complexity LMMSE channel estimation for OFDM ,” IEE Proceedings, vol. 153, no. 5, pp. 645–650, Oct. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top