跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/24 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳伯瑜
研究生(外文):Bo-Yu Chen
論文名稱:雙變色之新型螢光靜電紡絲奈米纖維及其pH與三價鐵離子感測應用
論文名稱(外文):Fabricating novel multifunctional fluorescent responsive polymers-based ES nanofibers that possess dual color fluorescence emissions for Fe3+ Ions and pH sensing
指導教授:郭霽慶 博士
指導教授(外文):Chi-Ching Kuo Ph.D.
口試委員:廖英志鄭如忠
口試日期:2015-01-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
中文關鍵詞:羅丹明B、螢光共振能量轉移(FRET)、三價鐵籬子、靜電紡絲纖維、螢光感測
外文關鍵詞:Rhodamine BFRETFe3+ElectrospinningChemosensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
我們將具備雙重螢光放光特性的高分子混合物poly(HEMA-co-NMA-co-NBDOMA)/SRhBOH , 利用靜電紡絲技術製備成,能夠感測三價鐵離子及對pH值敏感的多功能新穎性奈米纖維,並藉由螢光能量共振轉移(Fluorescence Resonance Energy Transfer)(FRET)的機制,來達到雙重螢光的放光表現。且深入探討其在水溶液環境中,針對不同濃度之三價鐵離子的感測能力及螢光表現。我們首先合成兩種不同螢光基團,分別為可感測三價鐵離子及對pH值敏感的橘紅色螢光Rhodamine-base衍生物SRhBOH(受體),以及綠色螢光單體 NBDOMA(供體)。其中SRhBOH(受體),會隨著溶液環境中的pH值以及三價鐵離子的存在與否,而達到螢光放光的開關性質。當處於中性、鹼性或無三價鐵離子的環境中,不會放出橘紅色螢光(spirolactam form);而當處於酸性或存在三價鐵離子的環境中,則會放出橘紅色螢光(ring-opened acyclic form)。
接著將親水性的hydrophilic 2-hydroxyethyl methacrylate (HEMA)、化學交聯的N-Methylolacrylamide (NMA)以及綠色螢光單體 NBDOMA(供體),利用AIBN當起始劑,進行自由基聚合(Free radical copolymerization)。合成出綠色螢光的高分子 poly(HEMA-co-NMA-co-NBDOMA),接著混摻橘紅色螢光的SRhBOH,再利用靜電紡絲技術製備成多功能新穎性奈米纖維。其多功能新穎性奈米纖維可感測水溶液中的三價鐵離子或pH值,並藉由螢光能量共振轉移(FRET)的機制,來達到不同的螢光放光開關性質。結果顯示,此種具備高度感測的多功能新穎性奈米纖維將可應用於環境中的pH值及金屬離子感測。
In the study, we fabricated a fluorescence resonance energy transfer (FRET)–based electrospun (ES) nanofibers that possess dual color ratiometric fluorescence emissions for Fe3+ ions and pH sensing from the responsive fluorescent random copolymers blends, poly(HEMA-co-NMA-co-NBD)/SRhBOH, and investigated the efficiency of different probe content on the probing sensitivity of Fe3+ ions and pH. A Rhodamine derivative of Fe3+-recognizing fluorescent probe (SRhBOH) (acceptor) and green fluorescence emission monomer (NBDOMA) (donor) were synthesized at first. The fluorescence emission of SRhBOH is highly based on both of pH-dependent and Fe3+-detected solutions, i.e, non-fluorescence emission in neutral media or without Fe3+ ions (spirolactam form), but highly fluorescence emission in acidic or the presence of Fe3+ ions (ring-opened acyclic form). The ES nanofibers were prepared from the responsive fluorescent copolymer blends, poly(HEMA-co-NMA-co-NBD) blending rhodamine B derivative (SRhBOH).
The copolymers were synthesized via free radical polymerization of initiator 2,2′-azobis(2-methylpropionitrile) (AIBN), hydrophilic 2-hydroxyethyl methacrylate (HEMA), cross-linked N-methylolacrylamide (NMA) and green fluorescence emission monomer (NBDOMA) (donor). Thus the on/off switching of FRET process can be modulated by solution pH and Fe3+ ions. The results indicate that multifunctional ES nanofibers with a high sensitivity toward pH and metal-ion for environmental sensory devices.
中文摘要 i
Abstract: iii
Acknowledgments v
Table of Contents vi
List of Figures ix
List of Tables xvii
List of Schemes xviii
Chapter 1 Introduction 1
1-1 Preface 1
1-2 Research Purpose 2
Chapter 2 Literature review and basic theories 4
2-1 Electrospinning 4
2-1.1 Setup, Process, Theories and Influences of morphologies 4
2-1.2 The applications of electrospun nanofibers 7
2-2 The applications of a variety of fluorescent Rhodamine-based derivatives for exploring metal ions 16
2-3 Synthesis of multifunctional polymer-baesd fluorescent chemosensors 27
2-4 Synthesis of FRET–based polymer as chemosensors for metal ions in aqueous media 32
Chapter 3 Experimental Section 44
3-1 Materials 44
3-2 Instruments 45
3-3 Synthesis of fluorophores, polymer, and ES nanofibers 46
3-3.1 Synthesis of the fluorescent probe (NBD-OH) 46
3-3.2 Synthesis of the fluorescent monomer (NBD-OMA) 47
3-3.3 Synthesis of the fluorescent probe (SRhBOH) 48
3-3.4 Synthesis of poly(HEMA-co-NMA-co-NBD) random copolymer by free radical polymerization 49
3-3.5 Preparation of cross-linked ES nanofibers 50
3-4 Characterization 51
Chapter 4 Results and Discussion 52
4-1 Characterization for green fluorescence monomer, Rhodamine-based derivative and poly(HEMA-co-NMA-co-NBD) 52
4-1.1 Structure characterized of the green fluorescence monomer (NBD-OMA) (donor) 52
4-1.2 Fluorescence property analysis of NBD-OMA (donor) by UV-Visible 54
4-1.3 Structure characterized of the fluorescence probe of Rhodamine-based derivative (SRhBOH) (acceptor) 55
4-1.4 Fluorescence property analysis for pH and selectivity of SRhBOH (acceptor) by UV-Visible 57
4-1.5 Characterization of the green fluorescence copolymer of poly(HEMA-co-NMA-co-NBD) 59
4-2 Morphologies of FRET copolymer-based ES nanofibers 63
4-3 Fluorescent emission behavior of ES nanofibers is based on Poly(HEMA-co-NMA-co-NBD)/SRhBOH 64
4-3.1 PL analysis of ES nanofibers with the different ratios of SRhBOH (acceptor) for pH-dependent 65
4-3.2 PL analysis of ES nanofibers is based on poly(HEMA-co-NMA-co-NBD)/20%SRhBOH in pH= 2~7 aqueous solution 70
4-3.3 PL analysis of ES nanofibers with the different ratios of SRhBOH (acceptor) for detecting Fe3+ ions 73
4-3.4 PL analysis of ES nanofibers is based on poly(HEMA-co-NMA-co-NBD)/20%SRhBOH for selectivity 78
Chapter 5 Conclusion 81
Chapter 6 References 82
1 D. Li, Y. Xia, Advanced Materials 2004, 16, 1151-1170.
2 J.M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, Polymer 2001, 42, 261-272.
3 N. Bhardwaj, S. C. Kundu, Biotechnology Advances 2010, 28, 325-347.
4 T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, S. S. Ramkumar, Journal of Applied Polymer Science 2005, 96, 557-569.
5 Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, Composites Science and Technology 2003, 63, 2223-2253.
6 J.-F. Zhang, D.-Z. Yang, Fei Xu, Z.-P. Zhang, R.-X. Yin, J. Nie, Macromolecules 2009, 42, 5278-5284.
7 S. Nair, E. Hsiao, S. H. Kim, Journal of Materials Chemistry 2008, 18, 5155-5161.
8 M. A. Kanjwal, N. A. M. Barakat, F. A. Sheikh, W.-i. Baek, M. S. Khil, H. Y. Kim, Fibers and Polymers 2010, 11, 700-709.
9 K. M. Yun, A. B. Suryamas, F. Iskandar, L. Bao, H. Niinuma, K. Okuyama, Separation and Purification Technology 2010, 75, 340-345.
10 L. D.Tijing, J.-S. Choi, S. Lee, S.-H. Kim, HoKyongShon, Journal of Membrane Science 2014, 453, 435-462.
11 Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, J. K. Lee, Current Applied Physics 2006, 6, 1030-1035.
12 J.-K. Choi, I.-S. Hwang, S.-J. Kim, J.-S. Park, S.-S. Park, U. Jeong, Y. C. Kang, J.-H. Lee, Sensors and Actuators B: Chemical 2010, 150, 191-199.
13 H. Yoshimoto, Y. M. Shin, H. Terai, J. P. Vacanti, Biomaterials 2003, 24, 2077-2082.
14 A. Cooper, R. Oldinski, H. Ma, J. D. Bryers, M. Zhang, Carbohydrate Polymers 2013, 92, 254-259.
15 Y.-C. Chiu, Y. Chen, C.-C. Kuo, S.-H. Tung, T. Kakuchi, W.-C. Chen, ACS Applied Materials &; Interfaces 2012, 4, 3387-3395.
16 W. Wang, Q. Yang, L. Sun, H. Wang, Ch. Zhang, X. Fei, M. Sun, Y. Li, Journal of Hazardous Materials 2011, 194, 185-192.
17 A. J. Weerasinghe, C. Schmiesing, E. Sinn, Tetrahedron Letters 2009, 50, 6407-6410.
18 B. Bag, A. Pal, Organic &; Biomolecular Chemistry 2011, 9, 4467-4480.
19 C. Yu, T. Wang, K. Xu, J. Zhao, M. Li, S. Weng, J. Zhang, Dyes and Pigments 2013, 96, 38-44.
20 D. Wu, W. Huang, C. Duan, Z. Lin, Q. Meng, Inorganic Chemistry Communication 2007, 46, 1538-1540.
21 D. Zhang, M. Wang, M. Chai, X. Chen, Y. Ye, Y. Zhao, Sensors and Actuators B: Chemical 2012, 168, 200-206.
22 F. Yan, D. Cao, M. Wang, N. Yang, Q. Yu, L. Dai, L. Chen, Journal of Fluorescence 2012, 22, 1249-1256.
23 H. Zheng, Z.-H. Qian, L. Xu, F.-F. Yuan, L.-D. Lan, J.-G. Xu, Organic Letters 2006, 8, 859-861.
24 J. Wang, H. Li, L. Long, G.Xiao, D. Xie, Journal of Luminescence 2012, 132, 2456-2461.
25 J. Mao, Q. He, W. Liu, Talanta 2010, 80, 2093-2098.
26 J. H. Soh, K. M. K. Swamy, S. K. Kim, S. Kim, S.-H. Lee, J. Yoon, Tetrahedron Letters 2007, 48, 5966-5969.
27 L. Huang, F.-P. Hou, P. Xi, D. Bai, M. Xu, Z. Li, G. Xie, Y. Shi, H. Liu, Z. Zeng, Journal of Inorganic Biochemistry 2011, 105, 800-805.
28 L. Tang, F. Li, M. Liu, R. Nandhakumar, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011, 78, 1168-1172.
29 L. Tang, Y. Li, R. Nandhakumar, J. Qian, Monatshefte für Chemie - Chemical Monthly 2010, 141, 615-620.
30 L. Zhang, J. Wang, J. Fan, K. Guo, X. Peng, Bioorganic &; Medicinal Chemistry Letters 2011, 21, 5413-5416.
31 N. R. Chereddy, S. Thennarasu, A. B. Mandal, Sensors and Actuators B: Chemical 2012, 171-172, 294-301.
32 Q. Meng, W. Su, X. Hang, X. Li, C. He, C. Duan, Talanta 2011, 86, 408-414.
33 R. Tang, K. Lei, K. Chen, H. Zhao, J. Chen, Journal of Fluorescence 2011, 21, 141-148.
34 W.-Y. Liu, H.-Y. Li, H.-S. Lv, B.-X. Zhao, J.-Y. Miao, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012, 95, 658-663.
35 X. Chen, Z. Li, Y. Xiang, A. Tong, Tetrahedron Letters 2008, 49, 4697-4700.
36 X. Zhang, S. Sumiya, Y. Shiraishi, T. Hirai, Journal of Photochemistry and Photobiology A: Chemistry 2009, 205, 215-220.
37 Y.-K. Yang, K.-J. Yook, J. Tae, Journal of the American Chemical Society communications 2005, 127, 16760-16761.
38 Y. Wang, H.-Q. Wu, J.-h. Sun, X.-Y. Liu, J. Luo, M.-Q. Chen, Journal of Fluorescence 2012, 22, 799-805.
39 Z. Zhou, M. Yu, H. Yang, K. Huang, F. Li, T. Yi, C. Huang, Chemical Communications 2008, 3387-3389.
40 Z.-Q. Hu, C.-S. Lin, X.-M. Wang, L. Ding, C.-L. Cui, S.-F. Liu, H. Y. Lu, Chemical Communications 2010, 46, 3765-3767.
41 J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan, W. Liu, Organic Letters 2007, 9, 4567-4570.
42 M. H. Lee, J.-S. Wu, J. W. Lee, J. H. Jung, J. S. Kim, Organic Letters 2007, 9, 2501-2504.
43 Y. Xiang, A. Tong, P. Jin, Y. Ju, Organic Letters 2006, 8, 2863-2866.
44 B. Ma, S. Wu, F. Zeng, Sensors and Actuators B: Chemical 2010, 145, 451-456.
45 J. Hu, C. Li, S. Liu, Langmuir 2010, 26, 724-729.
46 Y. Cui, Q. Chen, D.-D. Zhang, J. Cao, B.-H. Han, Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 1310-1316.
47 Y. Qi, N. Li, X. Xia, J. Ge, J. Lu, Q. Xu, Materials Chemistry and Physics 2010, 124, 726-731.
48 Y. Wang, H. Wu, J. Luo, X. Liu, Reactive &; Functional Polymers 2012, 72, 169-175.
49 C. Li, S. Liu, Chemical Communications 2012, 48, 3262-3278.
50 T. Liu, S. Liu, Analytical Chemistry 2011, 83, 2775-2785.
51 X. Wan, S. Liu, Journal of Materials Chemistry 2011, 21, 10321-10329.
52 B. Ma, S. Wu, F. Zeng, Y. Luo, J. Zhao, Z. Tong, Nanotechnology 2010, 21, 195501.
53 A. Alonso, F. Catalina, E. F. Salvador, C. Peinado, Macromolecular Chemistry and Physics 2001, 202, 2293-2299.
54 G. Bosma, C. Pathmamanoharan, E. H. A. d. Hoog, W. K. Kegel, A. van Blaaderen, H. N. W. Lekkerkerker, Journal of Colloid and Interface Science 2002, 245, 292-300.
55 O. Kalinina, E. Kumacheva, Macromolecules 1999, 32, 4122-4129.
56 G. Tillet, B. Boutevin, B. Ameduri, Progress in Polymer Science 2011, 36, 191-217.
57 W.-J. Chuang, W.-Y. Chiu, Polymer 2012, 53, 2829-2838.
58 W.-J. Chuang, W.-Y. Chiu, H.-J. Tai, Materials Chemistry and Physics 2012, 134, 1208-1213.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top