跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/07 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李彥昌
論文名稱:致病原檢測晶片元件之設計與製造: 吸收力驅動微流式細胞儀與面對面漸張式交流電滲流微濃縮器
指導教授:謝文馨謝文馨引用關係
指導教授(外文):Hsieh, Wen-Hsin
口試委員:馮國華任春平張國恩謝文馨吳瑋特
口試委員(外文):Feng, Guo-HuaJen, Chun-PingChang, Guo-EnHsieh, Wen-HsinWu, Wei-Te
口試日期:2016-07-18
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:微流式細胞儀超吸水性材料雷射誘導螢光水力聚焦螢光偵測軟微影技術交流電滲流微濃縮器非對稱電極對螢光增強因子濃度增強因子
外文關鍵詞:MicrochipMicroflow cytometerSuperabsorbent materialPDMSLIFHydrodynamic focusingFluorescence detectionSoft lithographyAC electroosmotic flowMicroconcentratorasymmetric electrode pairFluorescence enhancement factorConcentration enhancement factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為微流體元件之設計與製造,包含二種微流體元件: 一、吸收力驅動微流式細胞儀(AMCC)與 二、面對面漸張式交流電滲流微濃縮器。第一個部分,AMCC運用高吸水性材料之吸收力以驅動微流式細胞檢測晶片中之溶液,使該晶片具有不需外在動力即能運作及易微型化之優勢。探討了 AMCC內部流體流動特性、微結構尺寸對 AMCC流速與流體聚焦寬度的影響、雷射誘導螢光檢測系統參數最佳化、AMCC與流式細胞儀(BD, FACSCalibur)兩者螢光測試結果之比較以及 AMCC螢光偵測極限。由實驗結果顯示,在 AMCC中,高吸水性材料可造成相當穩定之微流道流速及流體聚焦現象,並可經由不同的微流道尺寸設計以控制 AMCC內流體流速與流體聚焦寬度(平均流速約由 1.6 mm/s到18.5 mm/s、流體聚焦寬度約由 4 μm到 23 μm)。本研究並成功的將 AMCC與雷射誘導螢光檢測系統結合,進行螢光校正顆粒之螢光檢測,且結果與現行流式細胞儀檢測結果符合,證實了以高吸水性材料做為微流體晶片流體驅動源的構想。第二個部分,面對面漸張式交流電滲流微濃縮器由一含頂部電極(氧化銦錫, indium tin oxide, ITO)之上板與一含底部電極(含三細長電極與一三角形電極)之下板所構成,上下板電極間利用蓋玻片作間隙形成流體反應室,利用三細長電極配合三角形電極與其連接處形成之電極漸張區域,將周圍流體反應室的待測物引導至底部電極中心,在底部電極中心附近產生流場停滯點,形成一濃縮區,並利用共軛焦顯微鏡分析垂直電極方向的濃度分佈,以對此濃縮器之濃縮區大小與分布更佳的了解,且此微濃縮器具備可重覆濃縮的功能。相較於其他文獻,在相似的施加電場下,本研究之濃縮器濃縮螢光乳膠顆粒(直徑 200 nm) 所得之螢光增強因子 3.9~9.1倍於其他文獻,濃縮雙股 DNA (T4 GT7 DNA)生物溶液所得之螢光增強因子 1.4~5.7倍於其他文獻。
The purpose of this research is the design and manufacture of microfluidic components, including two kinds of microfluidic components: (1) absorbing the force driving the micro flow cytometer (AMCC) and (2) AC electro-osmotic (AC-EO) microconcentrator using a face-to-face, asymmetric electrode pair with expanded sections in the bottom electrode. This work developed an absorbent-force-driven microflow cytometer chip (AMCC), in which solutions were driven by the absorbent force of superabsorbent materials to allow chip operation without external power and easy miniaturization. The polydimethylsiloxane (PDMS) cover of the microflow cytometer chip containing microchannels and reservoirs was fabricated by soft lithography and then bonded to a glass substrate. Then, superabsorbent material was put into contact with the microchannel’s end to drive the test solution from the reservoir to the superabsorbent material through the microchannel, forming a complete AMCC. The flow characteristics inside the AMCC, the impact of the microstructure size on the flow velocity and hydrodynamic focusing width of AMCC, and the optimized laser-induced fluorescence (LIF) detection system parameters were investigated in this work. Results showed that superabsorbent materials allowed stable microchannel flow and hydrodynamic focusing and that the flow rate and hydrodynamic focusing width of the AMCC could be controlled by varying the microchannel dimensions. The AMCC was integrated with the LIF detection system to detect the fluorescence of calibration particles, and the fluorescence results were consistent with those from a large-scale flow cytometer (BD, FACSCalibur), confirming the successful use of superabsorbent material as the fluid-driving source in an AMCC. An AC-EO microconcentrator using a face-to-face, asymmetric electrode pair with expanded sections in the bottom electrode is proposed in this study. The electrode pair of the AC-EO microconcentrator is composed of a larger top electrode (30 mm x 60 mm) and a bottom electrode (containing three slim electrodes and a triangular electrode). In the expanded section at the connection of a slim electrode and the triangular electrode, an electroosmosis flow transports test samples far away from the triangular electrode to the stagnation zone inside the triangular electrode through the slim electrode for concentration. On the three sides of the triangular electrode, vortices bring test samples surrounding the triangular electrode to the stagnation zone. By these two electroosmosis flow fields, the microconcentrator can concentrate test samples near and far from the triangular electrode to its central area, achieving a highly efficient sample concentration. The measured concentration distribution in the vertical electrode direction by confocal microscopy indicates that the concentration process occurs above the electrode surface. The capability of the proposed AC-EO concentrator in the repeated concentration and release of test samples is verified by a reversible switch test. The performance of the proposed AC-EO concentrator in concentrating latex particles and T4 GT7 DNA is better than those reported in the literature under similar average electric field strength. The fluorescence enhancement factor is 3.9 to 9.1 times better when concentrating latex particles and the concentration enhance factor, 1.4 to 5.7 times better when concentrating T4 GT7 DNA.
目錄
致謝 I
中文摘要 II
英文摘要 IV
目錄 1
圖目錄 3
表目錄 4
第一章 緒論 5
1-1 前言 5
1-2 流式細胞技術 7
1-3 電滲流濃縮器 7
第二章 吸收力驅動微流式細胞儀 9
2-1 前言 9
2-2 實驗方法 13
2-2-1 AMCC設計與製作 14
2-2-2 偵測系統 17
2-2-3 AMCC內部流體流動特性 19
2-2-4 微結構尺寸對AMCC之流速與流體聚焦寬度的影響 20
2-2-5 LIF系統參數最佳化 21
2-2-6 AMCC與典型流式細胞儀兩者螢光測試結果之比較及AMCC螢光偵測極限 23
2-3 結果與討論 23
2-4 結論 29
第三章 面對面漸張式交流電滲流微濃縮器 31
3-1 前言 31
3-2 實驗方法 34
3-2-1 晶片設計與製造 35
3-2-2 實驗設備 37
3-2-3 溶液備製 38
3-2-4 參數最佳化與螢光校正曲線 38
3-2-5 螢光增強因子與濃度增強因子 40
3-2-6 濃縮區、濃度等高線圖以及垂直底部電極表面之濃度變化 41
3-2-7 數值方法 41
3-3 結果與討論 43
3-3-1 以數值方法解釋流場現象 43
3-3-2 乳膠顆粒濃縮結果 46
3-3-3 T4 GT7 DNA 濃縮結果 53
3-4 結論 57
第四章 總結與未來規劃 59
4-1 總結 59
4-2未來研究方向 60
參考文獻 61
[1]衛生福利部疾病管制署–傳染病介紹–嚴重急性呼吸道症候群. Available: http://www.cdc.gov.tw/professional/SARS
[2]WHO, "Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 (Based on data as of the 31 December 2003)". Available: http://www.who.int/csr/sars/country/table2004_04_21/en/
[3]"WHO, "SARS: Status of the outbreak and lessons for the immediate future", 2003. Available: http://www.who.int/csr/media/sars_wha.pdf
[4]衛生福利部疾病管制署–傳染病介紹–中東呼吸症候群冠狀病毒感染症. Available: http://www.cdc.gov.tw/professional/MERS_CoV
[5]衛生福利部疾病管制署–傳染病介紹–中東呼吸症候群冠狀病毒感染症–國際重要疫情. Available: http://www.cdc.gov.tw/professional/epidemic.aspx?did=720&treeid=73dce9aab0d28b06&nowtreeid=06083110689277C8
[6]J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, "Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip," Journal of Biophotonics, vol. 1, pp. 355-376, Oct 2008.
[7]J. S. Kim and F. S. Ligler, "Utilization of microparticles in next-generation assays for microflow cytometers," Analytical and Bioanalytical Chemistry, vol. 398, pp. 2373-2382, Dec 2010.
[8]D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, "The good, the bad, and the tiny: a review of microflow cytometry," Analytical and Bioanalytical Chemistry, vol. 391, pp. 1485-1498, Jul 2008.
[9]M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, "Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes," Microfluidics and Nanofluidics, vol. 10, pp. 761-771, Apr 2011.
[10]H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, "Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing," Microfluidics and Nanofluidics, vol. 11, pp. 469-478, Oct 2011.
[11]M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, "Hydrodynamic optical alignment for microflow cytometry," Lab on a Chip, vol. 11, pp. 1138-1143, 2011.
[12]N. Hashemi, J. S. Erickson, J. P. Golden, K. M. Jackson, and F. S. Ligler, "Microflow Cytometer for optical analysis of phytoplankton," Biosensors & Bioelectronics, vol. 26, pp. 4263-4269, Jul 15 2011.
[13]M. Frankowski, N. Bock, A. Kummrow, S. Schadel-Ebner, M. Schmidt, A. Tuchscheerer, et al., "A Microflow Cytometer Exploited for the Immunological Differentiation of Leukocytes," Cytometry Part A, vol. 79A, pp. 613-624, Aug 2011.
[14]A. L. Thangawng, J. S. Kim, J. P. Golden, G. P. Anderson, K. L. Robertson, V. Low, et al., "A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays," Analytical and Bioanalytical Chemistry, vol. 398, pp. 1871-1881, Nov 2010.
[15]M. Rosenauer and M. J. Vellekoop, "Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system," Biomicrofluidics, vol. 4, Dec 2010.
[16]J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, "Multiplexed Detection of Bacteria and Toxins Using a Microflow Cytometer," Analytical Chemistry, vol. 81, pp. 5426-5432, Jul 1 2009.
[17]J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, et al., "Multi-wavelength microflow cytometer using groove-generated sheath flow," Lab on a Chip, vol. 9, pp. 1942-1950, 2009.
[18]H. T. Chen and Y. N. Wang, "Optical microflow cytometer for particle counting, sizing and fluorescence detection," Microfluidics and Nanofluidics, vol. 6, pp. 529-537, Apr 2009.
[19]C. H. Tsai, H. H. Hou, and L. M. Fu, "An optimal three-dimensional focusing technique for micro-flow cytometers," Microfluidics and Nanofluidics, vol. 5, pp. 827-836, Dec 2008.
[20]L. M. Fu, C. H. Tsai, and C. H. Lin, "A high-discernment microflow cytometer with microweir structure," Electrophoresis, vol. 29, pp. 1874-1880, May 2008.
[21]C. H. Lin, G. B. Lee, L. M. Fu, and B. H. Hwey, "Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer," Journal of Microelectromechanical Systems, vol. 13, pp. 923-932, Dec 2004.
[22]L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, "Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection," Analytica Chimica Acta, vol. 507, pp. 163-169, Apr 2004.
[23]C. I. Hung, B. J. Ke, G. R. Huang, B. H. Hwei, H. F. Lai, and G. B. Lee, "Hydrodynamic focusing for a micromachined flow cytometer," Journal of Fluids Engineering-Transactions of the Asme, vol. 123, pp. 672-679, Sep 2001.
[24]D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, "Microchip flow cytometry using electrokinetic focusing," Analytical Chemistry, vol. 71, pp. 4173-4177, Oct 1 1999.
[25]J. P. Golden, J. Verbarg, P. B. Howell, L. C. Shriver-Lake, and F. S. Ligler, "Automated processing integrated with a microflow cytometer for pathogen detection in clinical matrices," Biosensors & Bioelectronics, vol. 40, pp. 10-16, Feb 15 2013.
[26]L. M. Fu and Y. N. Wang, "Optical microflow cytometer based on external total reflection," Electrophoresis, vol. 33, pp. 3229-3235, Nov 2012.
[27]N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, "Optofluidic characterization of marine algae using a microflow cytometer," Biomicrofluidics, vol. 5, Sep 2011.
[28]Y. Y. Ling, Y. C. Zhang, W. J. Wen, P. Tabeling, and Y. K. Lee, "Integrated microgiant electrorheological fluid valves for microflow cytometry," Journal of Micro-Nanolithography Mems and Moems, vol. 8, Apr-Jun 2009.
[29]J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, A. Thangawng, et al., "ANYL 6-Multiplexed detection of bacteria and toxins in a microflow cytometer," Abstracts of Papers of the American Chemical Society, vol. 238, Aug 16 2009.
[30]M. Di Berardino, "Impedance Microflow Cytometry - Principles, Applications & Outlook," Cytometry Part A, vol. 75A, pp. 720-720, Aug 2009.
[31]Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, "Integration of optical pumped dye laser on organic microflowcytometry chip," Molecular Crystals and Liquid Crystals, vol. 463, pp. 413-422, Feb 2007.
[32]B. S. Broyles, S. C. Jacobson, and J. M. Ramsey, "Sample filtration, concentration, and separation integrated on microfluidic devices," Analytical Chemistry, vol. 75, pp. 2761-2767, Jun 1 2003.
[33]C. Hansang and L. P. Lee, "A novel integrated microfluidic SERS-CD with high-thoughput centrifugal cell trapping array for quantitative biomedicine," Society for Chemistry and Micro-Nano Systems, pp. 5-9, 2006.
[34]J. B. Bashir M. Mahara, and K. Torkos, "Liquid–liquid extraction for sample preparation prior to gas chromatography and gas chromatography–mass spectrometry determination of herbicide and pesticide compounds," Microchemical Journal, vol. 58, pp. 31-38, 1998.
[35]C. G. Zambonin, I. Losito, A. Cilenti, and F. Palmisano, "Solid-phase microextraction coupled to gas chromatography-mass spectrometry for the study of soil adsorption coefficients of organophosphorus pesticides," Journal of Environmental Monitoring, vol. 4, pp. 477-481, 2002.
[36]Y. Gutzman, A. D. Carroll, and J. Ruzicka, "Bead injection for biomolecular assays: Affinity chromatography enhanced by bead injection spectroscopy," Analyst, vol. 131, pp. 809-815, 2006.
[37]W. Zhang and C. X. Cao, "A review on stacking of analytes in high salt sample in capillary electrophoresis," Chinese Journal of Analytical Chemistry, vol. 33, pp. 267-271, Feb 2005.
[38]Z. Shihabi, "Review: Sample concentration based on inclusion of organic solvents in capillary zone electrophoresis," Current Pharmaceutical Analysis, vol. 2, pp. 9-15, Feb 2006.
[39]B. C. Giordano, D. S. Burgi, S. J. Hart, and A. Terray, "On-line sample pre-concentration in microfluidic devices: A review," Analytica Chimica Acta, vol. 718, pp. 11-24, Mar 9 2012.
[40]B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, "Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators," Analytical Chemistry, vol. 76, pp. 1571-1579, Mar 15 2004.
[41]B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, "Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water," Electrophoresis, vol. 25, pp. 1695-1704, Jun 2004.
[42]E. B. Cummings, B. A. Simmons, R. V. Davalos, G. J. McGraw, B. H. Lapizco-Encinas, and Y. Fintschenko, "Fast and selective concentration of pathogens by insulator-based dielectrophoresis," Abstracts of Papers of the American Chemical Society, vol. 230, pp. U404-U405, Aug 28 2005.
[43]E. T. Lagally, S. H. Lee, and H. T. Soh, "Integrated microsystem for dielectrophoretic cell concentration and genetic detection," Lab on a Chip, vol. 5, pp. 1053-1058, 2005.
[44]B. H. Lapizco-Encinas, R. V. Davalos, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, "An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water," Journal of Microbiological Methods, vol. 62, pp. 317-326, Sep 2005.
[45]L. J. Yang, P. P. Banada, M. R. Chatni, K. S. Lim, A. K. Bhunia, M. Ladisch, et al., "A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes," Lab on a Chip, vol. 6, pp. 896-905, 2006.
[46]R. H. Zhou, P. Wang, and H. C. Chang, "Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes," Electrophoresis, vol. 27, pp. 1376-1385, Apr 2006.
[47]Y. J. Zhao, U. C. Yi, and S. K. Cho, "Microparticle concentration and separation by traveling-wave dielectrophoresis (twDEP) for digital microfluidics," Journal of Microelectromechanical Systems, vol. 16, pp. 1472-1481, Dec 2007.
[48]Y. K. Cho, S. Kim, K. Lee, C. Park, J. G. Lee, and C. Ko, "Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip," Electrophoresis, vol. 30, pp. 3153-3159, Sep 2009.
[49]A. Ghubade, S. Mandal, R. Chaudhury, R. K. Singh, and S. Bhattacharya, "Dielectrophoresis assisted concentration of micro-particles and their rapid quantitation based on optical means," Biomedical Microdevices, vol. 11, pp. 987-995, Oct 2009.
[50]J. I. Martinez-Lopez, H. Moncada-Hernandez, J. L. Baylon-Cardiel, S. O. Martinez-Chapa, M. Rito-Palomares, and B. H. Lapizco-Encinas, "Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration," Analytical and Bioanalytical Chemistry, vol. 394, pp. 293-302, May 2009.
[51]Y. Xu, Q. Cao, X. Zeng, Y. J. Wu, and W. P. Zhang, "Research of Cell Concentration and Separation on the Dielectrophoretic Chip with Arrayed Opposite Electrodes," Chemical Journal of Chinese Universities-Chinese, vol. 30, pp. 876-881, May 10 2009.
[52]W. H. Yeo, J. H. Chung, Y. L. Liu, and K. H. Lee, "Size-Specific Concentration of DNA to a Nanostructured Tip Using Dielectrophoresis and Capillary Action," Journal of Physical Chemistry B, vol. 113, pp. 10849-10858, Aug 6 2009.
[53]D. F. Chen and H. J. Du, "A microfluidic device for rapid concentration of particles in continuous flow by DC dielectrophoresis," Microfluidics and Nanofluidics, vol. 9, pp. 281-291, Aug 2010.
[54]D. F. Chen, H. J. Du, and C. Y. Tay, "Rapid Concentration of Nanoparticles with DC Dielectrophoresis in Focused Electric Fields," Nanoscale Research Letters, vol. 5, pp. 55-60, Jan 2010.
[55]Y. K. Cho, T. H. Kim, and J. G. Lee, "On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip," Journal of Micromechanics and Microengineering, vol. 20, Jun 2010.
[56]M. Hayashi and K. Yasuda, "Simple Microfluidic Continuous Concentration of Microparticles with Different Dielectric Constants Using Dielectrophoretic Force in a V-Shaped Electrode Array," Japanese Journal of Applied Physics, vol. 49, 2010.
[57]H. Moncada-Hernandez and B. H. Lapizco-Encinas, "Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach," Analytical and Bioanalytical Chemistry, vol. 396, pp. 1805-1816, Mar 2010.
[58]M. Hayashi, T. Kaneko, and K. Yasuda, "Continuous Concentration and Separation of Microparticles Using Dielectrophoretic Force in a V-Shaped Electrode Array," Japanese Journal of Applied Physics, vol. 50, Jun 2011.
[59]E. A. Henslee, M. B. Sano, A. D. Rojas, E. M. Schmelz, and R. V. Davalos, "Selective concentration of human cancer cells using contactless dielectrophoresis," Electrophoresis, vol. 32, pp. 2523-2529, Sep 2011.
[60]H. Maruyama, K. Kotani, T. Masuda, A. Honda, T. Takahata, and F. Arai, "Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip," Microfluidics and Nanofluidics, vol. 10, pp. 1109-1117, May 2011.
[61]S. Park, Y. Zhang, T. H. Wang, and S. Yang, "Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity," Lab on a Chip, vol. 11, pp. 2893-2900, 2011.
[62]N. Lewpiriyawong, C. Yang, and Y. C. Lam, "Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field," Microfluidics and Nanofluidics, vol. 12, pp. 723-733, Mar 2012.
[63]W. H. Yeo, A. M. Kopacz, J. H. Kim, X. Q. Chen, J. S. Wu, D. Y. Gao, et al., "Dielectrophoretic concentration of low-abundance nanoparticles using a nanostructured tip," Nanotechnology, vol. 23, Dec 7 2012.
[64]M. Li, S. B. Li, W. B. Cao, W. H. Li, W. J. Wen, and G. Alici, "Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping," Microfluidics and Nanofluidics, vol. 14, pp. 527-539, Mar 2013.
[65]S. B. Li, M. Li, K. Bougot-Robin, W. B. Cao, I. Y. Y. Chau, W. H. Li, et al., "High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip," Biomicrofluidics, vol. 7, Mar 2013.
[66]S. V. Puttaswamy, C. H. Lin, S. Sivashankar, Y. S. Yang, and C. H. Liu, "Electrodeless dielectrophoretic concentrator for analyte pre-concentration on poly-silicon nanowire field effect transistor," Sensors and Actuators B-Chemical, vol. 178, pp. 547-554, Mar 1 2013.
[67]W. H. Yeo, H. B. Lee, J. H. Kim, K. H. Lee, and J. H. Chung, "Nanotip analysis for dielectrophoretic concentration of nanosized viral particles," Nanotechnology, vol. 24, May 10 2013.
[68]A. Gencoglu, D. Olney, A. LaLonde, K. S. Koppula, and B. H. Lapizco-Encinas, "Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis," Electrophoresis, vol. 35, pp. 362-373, Feb 2014.
[69]M. R. Bown and C. D. Meinhart, "AC electroosmotic flow in a DNA concentrator," Microfluidics and Nanofluidics, vol. 2, pp. 513-523, Nov 2006.
[70]N. Islam, M. Lian, and J. Wu, "Enhancing microcantilever capability with integrated AC electroosmotic trapping," Microfluidics and Nanofluidics, vol. 3, pp. 369-375, Jun 2007.
[71]J. T. Wu, J. R. Du, Y. J. Juang, and H. H. Wei, "Rectified elongational streaming due to asymmetric electro-osmosis induced by ac polarization," Applied Physics Letters, vol. 90, Mar 26 2007.
[72]P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, "Light-actuated ac electroosmosis for nanoparticle manipulation," Journal of Microelectromechanical Systems, vol. 17, pp. 525-531, Jun 2008.
[73]J. R. Du, Y. J. Juang, J. T. Wu, and H. H. Wei, "Long-range and superfast trapping of DNA molecules in an ac electrokinetic funnel," Biomicrofluidics, vol. 2, Oct-Dec 2008.
[74]K. F. Lei, H. Cheng, K. Y. Choy, and L. M. C. Chow, "Electrokinetic DNA concentration in microsystems," Sensors and Actuators a-Physical, vol. 156, pp. 381-387, Dec 2009.
[75]M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, "Active Manipulation of Quantum Dots using AC Electrokinetics," Journal of Physical Chemistry C, vol. 113, pp. 6561-6565, Apr 23 2009.
[76]J. R. Du and H. H. Wei, "Focusing and trapping of DNA molecules by head-on ac electrokinetic streaming through join asymmetric polarization," Biomicrofluidics, vol. 4, Sep 2010.
[77]R. Yokokawa, Y. Manta, M. Namura, Y. Takizawa, N. C. H. Le, and S. Sugiyama, "Individual evaluation of DEP, EP and AC-EOF effects on lambda DNA molecules in a DNA concentrator," Sensors and Actuators B-Chemical, vol. 143, pp. 769-775, Jan 7 2010.
[78]M. Motosuke, K. Yamasaki, A. Ishida, H. Toki, and S. Honami, "Improved particle concentration by cascade AC electroosmotic flow," Microfluidics and Nanofluidics, vol. 14, pp. 1021-1030, Jun 2013.
[79]K. F. Hoettges, M. B. McDonnell, and M. P. Hughes, "Continuous flow nanoparticle concentration using alternating current-electroosmotic flow," Electrophoresis, vol. 35, pp. 467-473, Feb 2014.
[80]B. Gas, "Theory of electrophoresis: Fate of one equation," Electrophoresis, vol. 30, pp. S7-S15, Jun 2009.
[81]E. Ban and E. J. Song, "Capillary electrophoresis methods for microRNAs assays: A review," Analytica Chimica Acta, vol. 852, pp. 1-7, Dec 10 2014.
[82]L. Mullerova, P. Dubsky, and B. Gas, "Twenty years of development of dual and multi-selector models in capillary electrophoresis: A review," Electrophoresis, vol. 35, pp. 2688-2700, Oct 2014.
[83]S. Orlandini, R. Gotti, and S. Furlanetto, "Multivariate optimization of capillary electrophoresis methods: A critical review," Journal of Pharmaceutical and Biomedical Analysis, vol. 87, pp. 290-307, Jan 18 2014.
[84]R. Westermeier, "Looking at proteins from two dimensions: a review on five decades of 2D electrophoresis," Archives of Physiology and Biochemistry, vol. 120, pp. 168-172, Dec 2014.
[85]T. B. Jones, "Basic theory of dielectrophoresis and electrorotation," Ieee Engineering in Medicine and Biology Magazine, vol. 22, pp. 33-42, Nov-Dec 2003.
[86]J. Wu, Y. X. Ben, D. Battigelli, and H. C. Chang, "Long-range AC electroosmotic trapping and detection of bioparticles," Industrial & Engineering Chemistry Research, vol. 44, pp. 2815-2822, Apr 13 2005.
[87]K. D. Huang, S. C. Yang, Z. X. Huang, and R. J. Yang, "Particle handling in straight microfluidic channels via opposing electroosmotic and pressure-driven flows," Microfluidics and Nanofluidics, vol. 5, pp. 245-253, Aug 2008.
[88]X. Y. Wang, C. Cheng, S. L. Wang, and S. R. Liu, "Electroosmotic pumps and their applications in microfluidic systems," Microfluidics and Nanofluidics, vol. 6, pp. 145-162, Feb 2009.
[89]D. J. Laser and J. G. Santiago, "A review of micropumps," Journal of Micromechanics and Microengineering, vol. 14, pp. R35-R64, Jun 2004.
[90]T. Stiles, R. Fallon, T. Vestad, J. Oakey, D. W. M. Marr, J. Squier, et al., "Hydrodynamic focusing for vacuum-pumped microfluidics," Microfluidics and Nanofluidics, vol. 1, pp. 280-283, Jul 2005.
[91]J. Nam, Y. Lee, and S. Shin, "Size-dependent microparticles separation through standing surface acoustic waves," Microfluidics and Nanofluidics, vol. 11, pp. 317-326, Sep 2011.
[92]D. Kohlheyer, S. Unnikrishnan, G. A. J. Besselink, S. Schlautmann, and R. B. M. Schasfoort, "A microfluidic device for array patterning by perpendicular electrokinetic focusing," Microfluidics and Nanofluidics, vol. 4, pp. 557-564, Jun 2008.
[93]Z. Yang and R. Maeda, "A world-to-chip socket for microfluidic prototype development," Electrophoresis, vol. 23, pp. 3474-3478, Oct 2002.
[94]G. M. Walker and D. J. Beebe, "A passive pumping method for microfluidic devices," Lab on a Chip, vol. 2, pp. 131-134, 2002.
[95]K. Hosokawa, K. Sato, N. Ichikawa, and M. Maeda, "Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis," Lab on a Chip, vol. 4, pp. 181-185, 2004.
[96]G. C. Randall and P. S. Doyle, "Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10813-10818, Aug 2 2005.
[97]M. Zimmermann, H. Schmid, P. Hunziker, and E. Delamarche, "Capillary pumps for autonomous capillary systems," Lab on a Chip, vol. 7, pp. 119-125, 2007.
[98]D. Huh, J. H. Bahng, Y. B. Ling, H. H. Wei, O. D. Kripfgans, J. B. Fowlkes, et al., "Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification," Analytical Chemistry, vol. 79, pp. 1369-1376, Feb 15 2007.
[99]M. Marimuthu and S. Kim, "Pumpless steady-flow microfluidic chip for cell culture," Analytical Biochemistry, vol. 437, pp. 161-163, Jun 15 2013.
[100]F.L. Buchholz and A.T. Graham, "Modern Superabsorbent Polymer Technology," John Wiley & Sons, 1998.
[101]T. T. Y. Zhang, M. Shibayama, "Super-absorbency and phase-transition of gels in physiological salt-solutions," Nature, vol. 360, pp. 142-144, 1992.
[102]G. V. N. Rathna and S. Damodaran, "Swelling behavior of protein-based superabsorbent hydrogels treated with ethanol," Journal of Applied Polymer Science, vol. 81, pp. 2190-2196, Aug 29 2001.
[103]M. Bakass, J. P. Bellat, A. Mokhlisse, and G. Bertrand, "The adsorption of water vapor an super absorbent product at low temperatures and low mass," Journal of Applied Polymer Science, vol. 100, pp. 1450-1456, Apr 15 2006.
[104]N. Ladhari, M. Ben Hassen, S. Saieb, and F. Sakli, "Study of absorption kinetics of complex absorbent structures," Annales De Chimie-Science Des Materiaux, vol. 32, pp. 447-459, Sep-Oct 2007.
[105]Y. Chen, Y. F. Liu, H. M. Tan, and J. X. Jiang, "Synthesis and characterization of a novel superabsorbent polymer of N,O-carboxymethyl chitosan graft copolymerized with vinyl monomers," Carbohydrate Polymers, vol. 75, pp. 287-292, Jan 22 2009.
[106]Y. Chen and H. M. Tan, "Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer," Carbohydrate Research, vol. 341, pp. 887-896, May 22 2006.
[107]S. K. Bajpai and S. Johnson, "Superabsorbent hydrogels for removal of divalent toxic ions. Part I: Synthesis and swelling characterization," Reactive & Functional Polymers, vol. 62, pp. 271-283, 2005.
[108]E. K. D. Saraydin, N.Oztop, O.Guven, "Adsorption of bovine serum albumin onto acrylamid—maleic acid hydrogels," Biomaterials, vol. 15, pp. 917-920, 1994.
[109]N. A. P. P. L. Ritger, "A simple equation for description of solute release II. Fickian and anomalous release from swellable devices," Journal of Controlled Release, vol. 5, pp. 37-42, 1987.
[110]H. B. H. A.R Berens, "Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters," Polymer, vol. 19, pp. 489-496, 1978.
[111]S. Thorslund, H. Nguyen, T. Larang, I. Barkefors, and J. Kreuger, "A disposable and multifunctional capsule for easy operation of microfluidic elastomer systems," Journal of Micromechanics and Microengineering, vol. 21, Dec 2011.
[112]F. Benito-Lopez, S. Coyle, R. Byrne, A. Smeaton, N. E. O'Connor, and D. Diamond, "Pump Less Wearable Microfluidic Device for Real Time pH Sweat Monitoring," Procedia Chemistry, vol. 1, pp. 1103-1106, Sep 2009.
[113]ImageJ home page. Available: http://rsbweb.nih.gov/ij/
[114]K. Yamashita, Y. Yamaguchi, M. Miyazaki, H. Nakamura, H. Shimizu, and H. Maeda, "Direct observation of long-strand DNA conformational changing in microchannel flow and microfluidic hybridization assay," Analytical Biochemistry, vol. 332, pp. 274-279, Sep 2004.
[115]Dimeric Cyanine Nucleic Acid Stains, Product Information. Available: https://tools.thermofisher.com/content/sfs/manuals/mp03600.pdf
[116]J. L. Chen, W. H. Shih, and W. H. Hsieh, "Three-dimensional non-linear AC electro-osmotic flow induced by a face-to-face, asymmetric pair of planar electrodes," Microfluidics and Nanofluidics, vol. 9, pp. 579-584, Aug 2010.
[117]N. A. Patankar and H. H. Hu, "Numerical Simulation of Electroosmotic Flow," Analytical Chemistry, vol. 70, pp. 1870-1881, May 1998.
[118]A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, "AC electric-field-induced fluid flow in microelectrodes," Journal of Colloid and Interface Science, vol. 217, pp. 420-422, Sep 15 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊