跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林金永
論文名稱:以使用者意見提升推薦系統效能之研究
論文名稱(外文):Exploiting User Opinions for Improving Individual Recommendations
指導教授:蔡銘峰蔡銘峰引用關係
學位類別:碩士
校院名稱:國立政治大學
系所名稱:資訊科學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:34
中文關鍵詞:推薦系統協同過濾文字探勘
外文關鍵詞:Recommender SystemsCollaborative FilteringText MiningFactorization Machines
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1093
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,受惠於網路的盛行及其帶來的便利性,許多網
站得以收集到大量的使用者對於商品之評價以及評論,運用
這些使用者的回饋資料進行分析,以更精準的進行商業行銷
正是當今浪潮。
而推薦系統廣泛應用於商業行銷,常用的推薦系統之計
算理論,乃依據使用者對商品的評分進行協同式的過濾,以
找出合適的產品給予推薦,其理論的基礎是品味相近的消費
者應該會喜歡類似的商品,使用者對商品的評分即為此模式
所採用的依據,例如:運用User-based Collaborative Filtering
,可以找出與被推薦者的特徵值類似的使用者,並以類似使
用者中較高評分的項目作為推薦清單,這種方式能得到相當
不錯的推薦結果,且計算的運算量亦不太大。
相較之下,以使用者對商品的文字評論作為依據的推薦
方法則較為少見,但我們認為文字訊息在推薦系統中亦佔有
相當份量的重要性;直覺上,將使用者的評分與其文字評論
作結合進行分析,應可更完整呈現該使用者的意向,並進而
應能改進推薦系統之推薦效能。在這份論文研究中,我們嘗
試結合使用者對商品的評分與文字評論於推薦系統中,並以
一份取自TripAdvisor.com的使用者對於飯店評價之資料集進
行實驗,透過libFM 建立推薦模型;從實驗結果探討中印證
了我們的想法:使用者的文字評論訊息的確能夠用以改進推
薦系統之效能。
1 Introduction 1
2 Related Work 5
2.1 文字探勘(Text Mining) 5
2.2 協同過濾(Collaborative Filtering) 7
2.2.1 以使用者為基礎(User-based)的協同過濾 8
2.2.2 以項目為基礎(Item-based)的協同過濾 9
2.2.3 以模型為基礎(Model-based)的協同過濾 10
2.3 基於內容的過濾(Content-Based Filtering) 10
2.4 混合式推薦系統(Hybrid Recommender Systems) 11
2.5 飯店推薦的相關研究工作 12
3 Methodology 15
3.1 分解機器函式庫(Factorization Machine Library) 15
3.2 資料集與文字前處理(Datasets and Preprocessing steps) 18
3.2.1 資料集 18
3.2.2 使用者對飯店評分的分布情形 19
3.2.3 文字前處理 19
3.2.4 文字評論資料集統計 21
4 Experimental Results 23
4.1 評量指標(Evaluation Metrics) 23
4.2 實驗設定(Experimental Settings) 24
4.2.1 實驗程序(Experimental Procedure) 26
4.3 實驗結果(Experimental Results) 27
4.3.1 libFM Regression實驗結果 27
4.3.2 libFM Binary Classification實驗結果 28
4.4 討論與分析(Discusssion and Analysis) 29
5 Conclusions and Future work 31
[1] G. Adomavicius and Y. Kwon. New recommendation techniques for
multicriteria rating systems. IEEE Intelligent Systems, 22(3):48–55,
2007.
[2] H. Ahn, K. Kim, and I. Han. Mobile advertisement recommender system
using collaborative filtering: Mar-cf. 2006.
[3] D. Bridge and A. Waugh. Using experience on the read/write web:
The ghostwriter system. In Proceedings of WebCBR: The Workshop
on Reasoning from Experiences on the Web (Workshop Programme of
the Eighth International Conference on Case-Based Reasoning), pages
15–24, 2009.
[4] R. Burke. Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, 12(4):331–370, 2002.
[5] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and
M. Sartin. Combining content-based and collaborative filters in an online
newspaper. In Proceedings of ACM SIGIR Workshop on Recommender
Systems, volume 60. Citeseer, 1999.
[6] M. Fuchs and M. Zanker. Multi-criteria ratings for recommender systems:
an empirical analysis in the tourism domain. In International
Conference on Electronic Commerce and Web Technologies, pages
100–111. Springer, 2012.
[7] K. Ganesan and C. Zhai. Opinion-based entity ranking. Information
Retrieval, 15(2):116–150, 2012.
33
[8] G. Huming and L. Weili. A hotel recommendation system based on
collaborative filtering and rankboost algorithm. In 2010 second international
conference on multimedia and information technology, 2010.
[9] A. Levi, O. Mokryn, C. Diot, and N. Taft. Finding a needle in a haystack
of reviews: cold start context-based hotel recommender system. In Proceedings
of the sixth ACM conference on Recommender systems, pages
115–122. ACM, 2012.
[10] Y. Liu, X. Huang, A. An, and X. Yu. Modeling and predicting the
helpfulness of online reviews. In Data Mining, 2008. ICDM’08. Eighth
IEEE International Conference on, pages 443–452. IEEE, 2008.
[11] C. D. Manning, P. Raghavan, and H. Sch¨utze. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA,
2008.
[12] M. P. O’Mahony and B. Smyth. Learning to recommend helpful hotel
reviews. In Proceedings of the Third ACM Conference on Recommender
Systems, pages 305–308. ACM, 2009.
[13] S. Rendle. Factorization machines. In Proceedings of Data Mining,
2010 IEEE 10th International Conference on, pages 995–1000. IEEE,
2010.
[14] S. Rendle. Factorization machines with libFM. ACM Transactions on
Intelligent Systems and Technology, 3(3):57:1–57:22, May 2012.
[15] G. Salton, A. Wong, and C.-S. Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.
[16] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th
Internatio
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊