跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/02 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳馨宇
研究生(外文):Hsin-Yu Wu
論文名稱:羥脯胺酸選拔耐逆境鳳梨之研究
論文名稱(外文):Studies on Hydroxyproline Selection for Stress Tolerant Pineapples
指導教授:陳京城
口試委員:楊耀祥施昭彰
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:55
中文關鍵詞:羥脯胺酸選拔誘變育種鳳梨耐逆境
外文關鍵詞:Hydroxyproline selectionMutation breedingPineappleStress tolerance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以‘台農17號’與‘台農20號’鳳梨為材料,以不同濃度NAA與BA組合添加於培養基中,誘導不同培植體生成癒傷組織,以及體胚誘導與器官發生,並測試EMS誘變與羥脯胺酸篩選之適合處理條件,另外,檢測EMS誘變品系對低溫逆境之耐受性及脯胺酸含量。
‘台農17號’鳳梨以葉片白色基部進行癒傷組織誘導,以1ppmNAA+8ppmBA較佳。 ‘台農20號’以葉片白色基部進行誘導,則以在2ppm NAA+8ppm BA之處理具有最高誘導率。
EMS誘變條件與羥脯胺酸篩選條件之試驗結果顯示,‘台農17號’鳳梨組培瓶苗以0.4% EMS 24小時為誘變條件,處理後35天存活率為62.5%,而羥脯胺酸18mM培養28天之存活率為47.5%。‘台農20號’鳳梨組培瓶苗則以0.4% EMS 24小時為誘變條件,於處理後35天有62.5%的存活率,羥脯胺酸18mM培養28天存活率只有為27.5%。因此,‘台農17號與‘台農20號’ 鳳梨對EMS之耐性相近,但‘台農20號’對羥脯胺酸之耐性則低於‘台農17號’鳳梨。
‘台農17號’鳳梨EMS誘變品系TN17M1-36-2及‘台農20號’EMS誘變品系TN20M1-4與TN20M1-6之第二子代(P2),均較未誘變系顯著含有較高脯胺酸含量,而在經由低溫(5ºC,14天)處理後,前述誘變系脯胺酸含量顯著上升,且也有較高之存活率,結果顯示,EMS誘變可產生較耐逆境之後代,且羥脯胺酸可用於鳳梨誘變植株耐逆境後代之篩選。


Using ‘Tainung No.17’ and ‘Tainung No.20’ pineapple (Ananas comosus (L.) Merrill.) as plant material, different combinations of NAA and BA were tested for callus induction, somatic embryo induction and organogenesis. The optimal treatment conditions for EMS mutagenesis and hydroxyproline selection were tested. In addition, cold tolerance and proline contents of EMS induced mutants were also examined.
In callus induction and proliferation, white basal part of ‘Tainung No.17’ pineapple leaves cultured in 1ppm NAA+ 8ppm BA had a higher induction rate. The highest induction rate occurred in the treatment of 2ppm NAA + 8ppm BA for ‘Tainung No.20’ pineapple.
The results of EMS mutagenesis treatment and hydroxyproline selection condition for ‘Tainung No.17’ tissue culture plantlets indicated that the survival rate was 62.5% 35days after 0.4% EMS 24 hours treatment and 47.5% after 28days of 18mM hydroxyproline treatment. For ‘Tainung No.20’ pineapple, the survival rate was 62.5% in the treatment of 0.4% EMS 24 hours, but only 27.5%sfter 28days of 18mM hydroxyproline treatment. As a result, the tolerance for ENS was similar for ‘Tainung No.17’ and ‘Tainung No.20’ pineapples, but the tolerance for hydroxyl- proline was lower for ‘Tainung No.20’ than for ‘ Tainung No.17’ pineapple.
The second generation progenies (P2) of ‘Tainung No.17’ pineapple EMS mutant TN17M1-36-2 and ‘Tainung No.20’ pineapple EMS mutants TN20M1-4 and TN20M1-6 had higher proline contents than the control plantlets. The proline contents of the above mutants were significantly increased after cold treatment (5ºC, 14 days) and had higher survival rates than the control. The results showed that EMS treatment could generate stress tolerant progenies and hydroxyproline could be used for stress tolerant progeny selection.


目次
摘要 i
Abstract ii
目次 iii
表目次 v
圖目次 vi
一、前言 1
二、前人研究 2
(一)鳳梨組織培養 2
1.果冠休眠腋芽增殖苗 2
2.癒傷組織植體再生 2
3.體胚的培養與增殖 3
(二)EMS(ethyl methanesulfonate)誘變 3
1.烷類誘變劑誘變機制 3
2.EMS誘變機制 3
3.EMS在作物育種上之應用 4
4.化學性誘變育種在鳳梨上之應用 5
(三)誘變後代之選拔 5
1.逆境型環境選拔 5
2.植物耐逆境性狀選拔 6
(四)Hydroxyproline 在作物育種上之應用 6
1.Hydroxyproline型態與形成機制 6
2.脯胺酸於植物逆境生理之意義 7
3.羥脯胺酸對植物生理之意義 7
4.羥脯胺酸與脯胺酸在作物育種上之應用 7
三、材料與方法 9
試驗一、‘台農17號’與‘台農20號’鳳梨不同部位之癒傷組織誘導 9
試驗二、‘台農17號’與‘台農20號’鳳梨癒傷組織之增殖 10
試驗三、EMS誘變‘台農17號’及‘台農20號’鳳梨組織培養小苗之最適條件 10
(一)EMS 誘變‘台農17號’鳳梨組織培養小苗之最適條件 10
(二)EMS 誘變‘台農20號’鳳梨組織培養小苗之最適條件 10
試驗四、EMS誘變‘台農20號’癒傷組織之增殖 11
試驗五、羥脯胺酸篩選‘台農17號’及‘台農20號’鳳梨組培小苗之最適條件 11
試驗六、低溫處理‘台農17號’及‘台農20號’鳳梨經EMS誘變及羥脯胺篩選後之組培小苗 12
(一)低溫處理‘台農17號’及’台農20號’組培小苗 12
(二)‘台農17號’鳳梨組培小苗 12
(三)‘台農20號’鳳梨組培小苗 13
四、結果 14
試驗一、‘台農17號’及‘台農20號’鳳梨不同部位之癒傷組織誘導 14
試驗二、‘台農17號’及’台農20號’鳳梨癒傷組織之增殖 22
試驗三、EMS誘變‘台農17號’及‘台農20號’鳳梨組織培養小苗之最適條件 32
試驗四、EMS誘變‘台農20號’鳳梨癒傷組織之增殖 35
試驗五、羥脯胺酸篩選‘台農17號’與‘台農20號’鳳梨組織培養小苗之最適條件 37
試驗六、低溫處理‘台農17號’與‘台農20號’ 鳳梨經EMS誘變及羥脯胺酸篩選後之組培小苗 40
五、討論 47
(一)鳳梨癒傷組織培養系統 47
(二)‘台農17號’與‘台農20號’鳳梨組織培養苗以EMS誘變之比較 49
(三)以EMS誘變‘台農20號’鳳梨癒傷組織對其增殖之影響 49
(四)羥脯胺酸與低溫逆境對鳳梨誘變品系篩選之探討 49
(五)結語 50
六、參考文獻 51


表目次
表1、‘台農17號’鳳梨葉片白色基部培養於不同生長調節劑培養基之誘導結果 16
表2、‘台農17號’鳳梨短縮莖培養於不同生長調節劑培養基之誘導結果 17
表3、‘台農20號’鳳梨葉片白色基部培養於不同生長調節劑培養基之誘導結果 18
表4、‘台農20號’鳳梨短縮莖培養於不同生長調節劑培養基之誘導結果 19
表5、‘台農17號’鳳梨癒傷組織於不同生長調節劑培養基培養4週後之結果 24
表6、‘台農17號’鳳梨癒傷組織於不同生長調節劑培養基培養8週後之結果 25
表7、‘台農20號’鳳梨癒傷組織於不同生長調節劑培養基培養4週後之結果 26
表8、‘台農20號’鳳梨癒傷組織於不同生長調節劑培養基培養8週後之結果 27
表9、EMS處理對‘台農17號’鳳梨組培苗存活率之影響 33
表10、EMS處理對‘台農20號’鳳梨組培苗存活率之影響 34
表11、EMS處理對‘台農20號’鳳梨癒傷組織培植體生長之影響 36
表12、不同濃度羥脯胺酸對‘台農17號’鳳梨組培苗存活率之影響 38
表13、不同濃度羥脯胺酸對‘台農20號’鳳梨組培苗存活率之影響 39
表14、低溫處理對‘台農17號’與‘台農20號’鳳梨組培苗存活率之影響 41
表15、低溫處理對‘台農17號’與‘台農20號’鳳梨組培苗脯胺酸含量之影響 42
表16、低溫處理對‘台農17號’鳳梨組培苗存活率之影響 43
表17、低溫處理對‘台農17號’鳳梨組培苗脯胺酸含量之影響 44
表18、低溫處理對‘台農20號’鳳梨組培苗之存活率 45
表19、低溫處理對‘台農20號’鳳梨組培苗脯胺酸含量之影響 46


圖目次
圖 1、‘台農17號’鳳梨組培苗葉片白色基部與短縮莖,經不同條件培養基誘導之培植體型態 20
圖 2、‘台農20號’鳳梨組培苗葉片白色基部與短縮莖,經不同條件培養基誘導之培植體型態 21
圖 3、‘台農17號’鳳梨癒傷組織培養4週後之結果 28
圖 4、‘台農17號’鳳梨癒傷組織培養8週後之結果 29
圖 5、‘台農20號’鳳梨癒傷組織培養4週後之結果 30
圖 6、‘台農20號’鳳梨癒傷組織培養8週後之結果 31


行政院農業委員會。2016。農業統計月報。<http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx>
行政院農業委員會。2015。農業統計年報。<http://amis.afa.gov.tw/main/AnnualReport.aspx>
行政院農業委員會。2015。農產品生產面積統計。農業統計資料查詢。<http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>
行政院農業委員會。2015。農產品生產量值統計。農業統計資料查詢。<http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>
行政院農業委員會農糧署。2016。農產品批發市場交易行情。<http://amis.afa.gov.tw/main/Main.aspx>
李文權。1972。烷類誘變劑的作用及其誘變效果。科學農業20:229-242。
黃俊生、孔德春、黃峰。1995。EMS誘變波羅癒傷組織選擇抗性突變體的研究。熱帶作物學報 16:1-6。
陳家慧、陳京城。2012。鳳梨白化苗EMS誘變及繼代增殖系統之建立。興大園藝 37:27-37。
黃炳龍。2011。疊氮化鈉γ射線對蜻蜓屬及擎天屬觀賞鳳梨器官分化過程誘變效應之初探。高雄區農業改良場研究彙報 21: 18-27。
Abrahám, E., C. Hourton-Cabassa, L. Erdei and L. Szabados. 2010. Methods for determination of proline in plants. Methods Mol Biol. 639:317-31
Adams, E. and L. Frank. 1980. Metabolism of proline and the hydroxyprolines. Ann. Rev. Biochem. 49:1005-61.
Adel, M.A.-S. 2011. Effects of benzylaminopurine and naphthalene acetic acid on proliferation and shoot growth of pineapple (Ananas comosus L. Merr) in vitro. Afr. J. Biotechnol. 10 : 5291-5295.
Ahloowalia., B.S. and M. Maluszynski. 2001. Induced mutations – A new paradigm in plant breeding. Euphytica 118:167–173.
Amin, M.N., M.M.Rahman, K.W. Rahman, R. Ahmed, M.S. Hossian and M.B. Ahmed. 2005. Large scale plant in vitro from leaf derived callus cultures of pinapple [Ananas comosus (L.) Merr. cv. Glant Kew]. Int. J. Bot. 1:128-132.
Anupunt, P., P. Chairdchai, A. Kongwat and S. Iswilanon. 2000. The pineapple industry in Thailand. Acta Hort. 529:99-107.
Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59:206–216.
Atkinson, N. J., T. P. Dew, C. Orfila and P. E. Urwin. 2011. Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). J. Agric. Food Chem. 59:9673–9682.
Ayenew, B., T. Tadesse1, E. Gebremariam1, A. Mengesha1 and W. Tefera. 2013. Efficient use of temporary immersion bioreactor (TIB) on pineapple (Ananas comosus l.) multiplication and rooting ability. J. Microbio. Biotechnol. Food. Sci. 2:2456-2465.
Balito, L. P. 2011. The Philippine pineapple industry. Acta Hort. 902:53-62.
Bidabadi, S. S., M. Mahmood, S Meon, Z. Wahab and C. Ghobadi. 2011. Evaluation of in vitro water stress tolerance among EMS – Induced variants of banana (Musa spp., AAA), using “morphological, physiological and molecular” traits. J. Crop Sci. Biotech. 14:255-263.
Bidabadi, S. S., S. Meon, Z. Wahab, S. Subramaniam and M. Mahmood. 2012. In vitro selection and characterization of water stress tolerant lines among ethyl methanesulphonate (EMS) induced variants banana (Musa spp., with AAA genome). Aust. J. Crop. Sci. 6:567-575.
Chen, Y. H. and C. C. Chen. 2010. RAPD marker assisted selection of EMS induced pineapple ( Ananas comosus (L.) Merr.) mutants. Pineapple News 17: 24-26.
Chen, S.J., Z. H. Shu, C. S. Kuan. and C. H. Tang. 2011. Current situation of pineapple production in Chinese Taipei. Acta Hort. 902:63-67.
Dar , M. I., M. I. Naikoo, F. Rehman, F. Naushin and F. A. Khan. 2016. Proline accumulation in plants: roles in stress tolerance and plant development. pp. 155-166. In: N. Iqbal, R. Nazar, and N. A. Khan. (eds). Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer India. India.
Deane., C. R., M. P. Fuller and P. J. Dix. 1995. Selection of hydroxyproline- resistant proline-accumulating mutants of cauliflower (Brassica oleracea var. botrytis). Euphytica 85:329-334.
De Silva, A.E., M.A. Kadir, M.A. Aziz and S. Kadzimin. 2006. Proliferation potential of 18-month-old callus of Ananas comosus L. cv. Moris. Sci. World J. 6:169-175.
De Silva, A.E., M.A. Kadir, M.A. Aziz and S. Kadzimin. 2008. Callus induction in pineapple (Ananas comosus L.) cv. Moris and Josapine. Int. J. Agric. Res. 3:261-267.
Devi Prasad, P. V. and S. D. P. Potluri. 1996. Influence of proline and hydroxyproline on salt-stressed axillary bud cultures of two varieties of potato (Solanum tuberosum). In Vitro C ell. Dev. Biol. Plant. 32:47-50.
Dolgov, S. V., T. V. Shushkova and A. P. Firsov. 1998. Pineapple (Ananas comosus Mess.) regeneration from leaf explants. Acta Hort. 461:439-444.
Dörffling, K., H. Dörffling, G. Lesselich, E. Luck, C. Zimmermann, G.Melz and H.U. Jürgens. 1997. Heritable improvement of frost tolerance in winter wheat by in vitro-selection of hydroxyproline-resistant proline overproducing mutants. Euphytica. 93: 1-10
Espinosa, P., J.C. Lorenzo., A. Iglesias., L. Yabor., E. Menéndez., J. Borroto., L. Hernández and A.D. Arencibia. 2002. Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep. 21:136-140.
Fang, J. Yi. and S. Traore,. 2011. In vitro mutation induction of saintpaulia using ethyl methanesulfonate. Hort. Sci. 46:981–984.
FAO. 2014. World pineapple production quantity. <http://faostat3.fao.org/browse/Q/QC/E>
Fitchet, M. 1990. Oganogenesis in callus cultures of pineapple (Ananas comosus (L.) Merr.). Acta Hort. 275:267-274.
Firoozabady, E. and Y. Moy. 2004. Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In Vitro Cell. Dev. Biol.: Plant. 40:67-74.
Fuller, M. P., E. M. R. Metwali, A. M. H. Eed and A. J. Jellings. 2006. Evaluation of abiotic stress resistance in mutated populations of cauliflower (Brassica oleracea var. botrytis). Plant Cell Tiss. Organ Cult. 86:239–248.
Ghani, M., S. Kumar and M. Thakur. 2013. Induction of novel variants through physical and chemical mutagenesis in Barbeton daisy (Gerbera jamesonii Hook.). J. Hortic. Sci. Biotech. 88:585–590.
Giebel, J. and M. Stobiecka. 1974. Role of amino acids in plant tissue response to Heterodera rostochiensis. I. Protein-proline and hydroxyproline content in roots of susceptible and resistant Solanaceous plants. Nematologica 20:407-414.
Gong, F., X. Hu and W. Wang. 2015. Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research? Front. Plant Sci. 6:1-5.
Heide, O. M. and A. S?nsteby. 2015. Flowering physiology and cold resistance of Potentilla palustris (L.) Scop., a wild relative of the strawberry. J. Hortic. Sci. Biotechnol. 90:235-244.
Kodym, A. and R. Afza. 2003. Physical and chemical mutagenesis. Method Mol. Biol. 236:189-204.
Kurowska, M., A. Daszkowska-Golec, D. Gruszka, M. Marzec, M. Szurman, I. Szarejko and M. Maluszynski. 2011. TILLING─ a shortcut in functional genomics. J. Appl. Genet. 52:371–390.
Kuttan, R. and A. N. Radhakrishnan. 1973. Metabolism of hydroxyproline in plants. In: Biochemistry of the Hydroxyproline. pp 317-331.
Leitao, J. M. 2011. Chemical mutagenesis. In: Plant Mutation Breeding an Biotechnology. pp 135-158.
Lokko, Y. and H. Amoatey. 2001. Improvement of pineapple using in vitro and mutation breeding techniques. In: In vitro techniques for selection of radiation induced mutations adapted to adverse environmental conditions, IAEA, Vienna. pp. 25-29.
Luan, Y.S., J. Zhang, X. R. Gao and L. J. An. 2007. Mutation induced by ethyl methanesulphonate (EMS), in vitro screening for salt tolerance and plant regeneration of sweet potato (Ipomoea batatas L.). Plant Cell Tiss. Organ. Cult. 88:77–81.
Mujib, A. 2005.Colchicine induced morphological variants in pineapple. Plant Tiss. Cult. Biot. 15: 127-133.
Nahar, K. and R. Gretzmacher. 2002. Effect of water stress on nutrient uptake, yield and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Bodenkultur 53:45-51.
Paull, R. E. and O. Duarte.2011. Pineapple, p. 292-326. In: Tropical Fruits. vol. 1. 2nd edition. MPG books group. UK.
Polavarapu, B., K. Kishor and N. Sreenivasulu. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?. Plant Cell Environ. 37:300-311.
Predieri, S. 2001. Mutation induction and tissue culture in improving fruits. Plant Cell. Tiss. Org. Cult. 64: 185–210.
Rai, M. K., R. K. Kalia., R. Singh., M. P. Gangola and A.K. Dhawan. 2011. Developing stress tolerant plants through in vitro selection— An overview of the recent progress. Environ. Exp. Bot.71:89-98
Rajashekar, C.B and M. Panda. 2014. Water stress is a component of cold acclimation process essential for inducing full freezing tolerance in strawberry. Sci. Hort. 174:54-59.
Soneji., J. R., P. S. Rao and M. Mhatre.2002. Somaclonal variation in micropropagated dormant axillary buds of pineapple (Ananas comosus L., Merr.). J. Hortic. Sci. Biotechnol. 77:28-32.
Sripaoraya, S., R. Marchant, J. B. Power and M. R. Davey. 2003. Plant regeneration by somatic embryogenesis and organogenesis in commercial. In Vitro Cell. Dev. Biol. Plant. 39:450–454.
Swaaij., A. C., E. Jacobsen, J. A. K. W. Kiel and W. J. Feenstra. 1986. Selection, characterization and regeneration of hydroxyproline-resistant cell lines of Solanum tuberosum: Tolerance to NaCl and freezing stress. Physiol. Plant. 68:359-366.
Szabados, L. and A. Savoure. 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15:89-97.
Taiz., L. and E. Zeiger. 2015. Reponses and adaptation to abiotic stress. In: Plant Physiology. 6th edition. pp. 756-782.
Teng., W. L. 1997. An alternative propagation method of Ananas through nodule culture. Plant Cell Rep. 16:454-457.
Vicente-Dólera, N., V. Pinillos, M. Moya, M. Del Río-Celestino, T. Pomares-Viciana, B. Román and P. Gómez. 2014. An improved method to obtain novel mutants in Cucurbita pepo by pollen viability. Sci. Hortic. 169:14-19.
von Arnold, S., I. Sabala, P. Bozhkov1, J. Dyachok and L. Filonova. 2002. Developmental pathways of somatic embryogenesis. Plant Cell Tiss. Org. 69: 233–249.
van Harten, A.M. 1998.Mutation Breeding: Theory and Practucal Applications. Cambridge Univ. Press.
Yapo, E. S., T. H. Kouakou, M. Kone, J. Y. Kouadio, P. Kouame and J. -M. Merillon. 2011. Regeneration of pineapple (Ananas comosus L.) plant through somatic embryogenesis. J. Plant Biochem. Biot. 20:196-204.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top