跳到主要內容

臺灣博碩士論文加值系統

(3.215.79.68) 您好!臺灣時間:2022/07/04 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊堂
研究生(外文):Jyun-Tang Huang
論文名稱:透過適時介入輔導提升磨課師課程之完課率
論文名稱(外文):Increasing MOOCs completion rate with timely intervention
指導教授:楊鎮華楊鎮華引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:42
中文關鍵詞:磨課師完課率介入輔導教育資料探勘
相關次數:
  • 被引用被引用:1
  • 點閱點閱:597
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,大規模開放式線上課程(Massive Open Online Course, MOOCs)在教育領域已逐漸成為主流趨勢,MOOCs在台灣稱為磨課師。在磨課師課程中低完課率為極需要突破的瓶頸問題,因此,有效提升完課率的機制持續受到研究學者高度關注。
相關文獻指出針對高風險學生進行介入輔導可以提升續讀率及完課率。然而,在介入輔導前需提早並精準預測高風險學生,方能針對高風險學生進行適時介入輔導。因此,本篇論文實作預警系統,提早並精準預測高風險學生,提供課程團隊預警清單。
本論文之預警系統主要根據學生進入課程時間來定義學習週次,並收集當週所有學習活動的相關資訊,達到提早並精準預測下週高風險學生的目的。實驗結果顯示,使用邏輯迴歸分析所建立下週高風險學生預測模型,其精準度達77%。

In recent years, Massive Open Online Courses(MOOCs)have gradually become a mainstream. However, in MOOCs, the issue of low completion rates is a big problem, developing effective mechanisms has been regarded as an important research.
According to the research, it indicated that timely intervention for at-risk students could increase retention rates and completion rates. Nevertheless, predicting for at-risk students has to be precise and in advance of interventions. In this paper, we implemented a warning system and provided a list of at-risk students for the course teams.
The predictor model uses each learners’ first learning as the first day of the week. Finally, the result shows that the precision rate of the predictive model is up to 77%

摘要 i
ABSTRACT ii
圖目錄 iv
表格目錄 v
一、 緒論 1
二、 文獻探討 3
2.1 磨課師(MOOCs) 3
2.2 學習干預(Intervention) 3
三、 系統設計 5
3.1 開發環境 6
3.2 系統架構 8
3.3 資料收集 9
3.4 資料儲存 11
3.5 資料萃取與分析 12
3.5.1 缺席的定義 12
3.5.2 資料處理(資料清理及特徵擷取) 12
3.5.3 訓練資料集 17
3.5.4 演算法介紹 18
3.5.5 評估模型 20
3.6 資訊應用 22
3.6.1 資料的統計分析功能 22
3.6.2 學習活動統計分析功能 24
3.6.3 影片瀏覽的分析功能 26
3.6.4 缺席預警功能 27
四、 結果及討論 29
五、 結論及未來方向 32
參考文獻 33


Alraimi, K. M., Zo, H., & Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputation. Computers & Education, 80, 28-38.
Akçapınar, G. (2015). How automated feedback through text mining changes plagiaristic behavior in online assignments. Computers & Education, 87, 123-130.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Ho, T. K. (1998). The random subspace method for constructing decision forests. Pattern Analysis and Machine Intelligence, IEEE Transactions on,20(8), 832-844.
Chorianopoulos, K., Giannakos, M. N., Chrisochoides, N., & Reed, S. (2014, July). Open Service for Video Learning Analytics. In Advanced Learning Technologies (ICALT), 2014 IEEE 14th International Conference on (pp. 28-30). IEEE.
Clow, D. (2013, April). MOOCs and the funnel of participation. In Proceedings of the Third International Conference on Learning Analytics and Knowledge (pp. 185-189). ACM.
Creed-Dikeogu, G., & Clark, C. (2013). Are you MOOC-ing yet? A review for academic libraries. Kansas Library Association College and University Libraries Section Proceedings, 3(1), 9-13.
De Boer, J., Kommers, P. A., & De Brock, B. (2011). Using learning styles and viewing styles in streaming video. Computers & Education, 56(3), 727-735.
Halawa, S., Greene, D., & Mitchell, J. (2014). Dropout prediction in MOOCs using learner activity features. Experiences and best practices in and around MOOCs, 7.
Hew, K. F., & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (MOOCs): Motivations and challenges. Educational Research Review, 12, 45-58.
Hu, Y. H., Lo, C. L., & Shih, S. P. (2014). Developing early warning systems to predict students’ online learning performance. Computers in Human Behavior,36, 469-478.
Jordan, K. (2014). Initial trends in enrolment and completion of massive open online courses. The International Review of Research in Open and Distributed Learning, 15(1).
Khalil, H., & Ebner, M. (2014, February). MOOCs completion rates and possible methods to improve retention-A literature review. In World Conference on Educational Multimedia, Hypermedia and Telecommunications (No. 1, pp. 1305-1313).
Kleftodimos, A., & Evangelidis, G. (2014, July). Exploring student viewing behaviors in online educational videos. In Advanced Learning Technologies (ICALT), 2014 IEEE 14th International Conference on (pp. 367-369). IEEE.
Kloft, M., Stiehler, F., Zheng, Z., & Pinkwart, N. (2014, October). Predicting MOOC dropout over weeks using machine learning methods. In Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs (pp. 60-65).
Kim, J., Guo, P. J., Seaton, D. T., Mitros, P., Gajos, K. Z., & Miller, R. C. (2014, March). Understanding in-video dropouts and interaction peaks inonline lecture videos. In Proceedings of the first ACM conference on Learning@ scale conference (pp. 31-40). ACM.
Lonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90-97.
Lykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis, G., & Loumos, V. (2009). Dropout prediction in e-learning courses through the combination of machine learning techniques. Computers & Education, 53(3), 950-965.
Mason, L., Junyent, A. A., & Tornatora, M. C. (2014). Epistemic evaluation and comprehension of web-source information on controversial science-related topics: Effects of a short-term instructional intervention. Computers & Education, 76, 143-157.
McAuley, A., Stewart, B., Siemens, G., & Cormier, D. (2010). The MOOC model for digital practice.
Shi, C., Fu, S., Chen, Q., & Qu, H. (2014, October). VisMOOC: Visualizing video clickstream data from massive open online courses. In Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on (pp. 277-278). IEEE.
Ullrich, C., Shen, R., & Xie, W. (2013, July). Analyzing student viewing patterns in lecture videos. In Advanced Learning Technologies (ICALT), 2013 IEEE 13th International Conference on (pp. 115-117). IEEE.
Sinha, T., Jermann, P., Li, N., & Dillenbourg, P. (2014). Your click decides your fate: Inferring information processing and attrition behavior from mooc video clickstream interactions. arXiv preprint arXiv:1407.7131.
Voss, B. D. (2013). Massive open online courses (MOOCs): A primer for university and college board members. AGB Association of Governing Boards of Universities and Colleges.
Yuan, L., Powell, S., & CETIS, J. (2013). MOOCs and open education: Implications for higher education.
Zheng, S., Rosson, M. B., Shih, P. C., & Carroll, J. M. (2015, February). Understanding student motivation, behaviors and perceptions in MOOCs. InProceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 1882-1895). ACM.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top