跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳萱
研究生(外文):Hsuan Chen
論文名稱:探討卡洛里限制對於噪音性聽損的影響
論文名稱(外文):To study the impact of calorie restriction on noise-induced hearing loss.
指導教授:王智弘王智弘引用關係
指導教授(外文):Chih-Hung Wang
口試委員:張俊梁劉岱瑋
口試委員(外文):Junn-liang ChangDai-wei Liu
口試日期:2015-12-18
學位類別:碩士
校院名稱:國防醫學院
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:64
中文關鍵詞:短期卡洛里限制
外文關鍵詞:calorie restriction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
噪音是常見造成聽損傷害的原因之一,也是全世界最為常見的職業傷害,其病理成因包含活性氧化物質在耳蝸中的大量生成導致噪音聽損傷害的發生。此外,耳蝸內作為接收聲音的機械性毛細胞受聲音刺激後對能量具有高度新陳代謝的需求,使其對氧化壓力的傷害較其它組織器官而言更為敏感。先前的研究發現卡洛里限制下可以減少氧化傷害進而降低年老性聽損傷害機率; 進一步的的研究顯示去乙醯化酶sirt3對卡洛里限制下具有調節、降低氧化傷害的角色之一。有研究指出,在神經退化相關疾病中,腦型肌酸激酶表現與活性氧化物質及聽損傷害間具有關聯性。腦型肌酸激酶在神經組織中對能量調控占有重要的角色,我們實驗室過去研究指出在神經退化性的相關疾病中,增加腦型肌酸激酶的表現量可降低聽力損傷。因此本研究中我們假設卡洛里限制下可以減少噪音所生成的活性氧化物質,進而降低聽損傷害的發生,希望能驗證卡洛里限制對預防噪音性聽損的影響。實驗結果顯示卡洛里限制下實驗組的體重較正常飲食的對照組輕,且其去乙醯化酶sirt3與腦型肌酸激酶的表現量也較對照組高。40%熱量飲食控制組初步看起來對聽損傷害有保護效果。當細胞腦型肌酸激酶大量表現時會提升粒腺體的活性。且腦型肌酸激酶大量表現的細胞對維生素K3 menadione (2-methyl-1,4-naphthoquinone) 傷害教具有保護效果。
Noise is one of the most common causes of hearing loss, and one of the most common occupational illnesses in the world. Noise-induced hearing loss (NIHL) following cochlear damage to noise trauma was linked to a common pathogenesis involving the formation of reactive oxygen species (ROS). Cochleae are more vulnerable to oxidative stress than other organs because of the high metabolic demands of their mechanosensory hair cells in response to sound stimulation. Previous studies have shown that calorie restriction are able to reduce oxidative damage to prevent age-related hearing loss. Recent data suggests that Sirt3 plays a main role to mediate reduction of oxidative damage under calorie restriction. Previous studies shown that neurodegenerative genetic disorder related brain-type creatine kinase (CKB) is sensitive to oxidative modification. Overexpression of CKB might be able to restore their hearing. We therefore hypothesize that caloric restriction can also rescue the noise-exposed hearing damage. In this study, our specific aim is to investigate the impact of calorie restriction on hearing preservation in noise-exposed animals. Our preliminary results demonstrated that calorie restriction in mice resulted in weight loss and elevation of Sirt3 and CKB proteins. After noise exposure, animals treated with 40% calorie restriction diet for 12 weeks exhibited a better ABR thresholds as compared to the control. We also found that overexpression of CKB in HEI-OC1 cells would result in a better functional state of mitochondria and were more resistant to the cytotoxicity of menadione than the control.
中文摘要 V
Abstract VII
第一章 緒論 1
第一節 活性氧化物質 1
第二節 卡洛里飲食限制 2
第三節 去乙醯化酶sirt3 3
第四節 腦型肌酸激酶 4
第五節 耳蝸的功能與構造 4
第六節 噪音性聽損傷害 5
第七節 實驗動機與目的 5
第二章 材料與方法 7
第一節 試劑 7
第二節 動物模式 10
第三節 聽性腦幹反應 10
第四節 噪音模式 11
第五節 耳蝸組織樣本製備 11
第六節 石蠟組織切片 12
第七節 免疫組織化學染色 12
第八節 蛋白質定量 13
第九節 西方墨點法 14
第十節 細胞株培養 16
第十一節 模擬ROS環境 16
第十二節 胞內ROS偵測 16
第十三節 細胞轉染 17
第三章 結果 18
第一節 卡洛里限制對去乙醯化酶sirt3的影響 18
第二節 卡洛里限制對腦型肌酸激酶的影響 19
第三節 卡洛里限制下對噪音曝露的影響 20
第四節 氧化壓力環境對細胞株之影響 22
第五節 腦型肌酸激酶大量表現對細胞株的影響 23
第六節 腦型肌酸激酶大量表現細胞株對氧化傷害的保護效果 24
第四章 討論 26
第五章 結論 29
第六章 參考文獻 30


1Halliwell, B. Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. British journal of experimental pathology 70, 737-757 (1989).
2Liochev, S. I. & Fridovich, I. Superoxide and iron: partners in crime. IUBMB life 48, 157-161, doi:10.1080/713803492 (1999).
3Bayir, H. Reactive oxygen species. Critical care medicine 33, S498-501 (2005).
4LeDoux, S. P., Driggers, W. J., Hollensworth, B. S. & Wilson, G. L. Repair of alkylation and oxidative damage in mitochondrial DNA. Mutation research 434, 149-159 (1999).
5Stadtman, E. R. & Levine, R. L. Protein oxidation. Annals of the New York Academy of Sciences 899, 191-208 (2000).
6Nordberg, J. & Arner, E. S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free radical biology & medicine 31, 1287-1312 (2001).
7Fink, M. P. Reactive oxygen species as mediators of organ dysfunction caused by sepsis, acute respiratory distress syndrome, or hemorrhagic shock: potential benefits of resuscitation with Ringer's ethyl pyruvate solution. Current opinion in clinical nutrition and metabolic care 5, 167-174 (2002).
8Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247, doi:10.1038/35041687 (2000).
9Koubova, J. & Guarente, L. How does calorie restriction work? Genes & development 17, 313-321, doi:10.1101/gad.1052903 (2003).
10McCay, C. M. Iodized Salt a Hundred Years Ago. Science 82, 350-351, doi:10.1126/science.82.2128.350-a (1935).
11Austad, S. N. Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Experimental gerontology 24, 83-92 (1989).
12Boivin, A., Gaumer, S. & Sainsard-Chanet, A. Life span extension by dietary restriction is reduced but not abolished by loss of both SIR2 and HST2 in Podospora anserina. Mechanisms of ageing and development 129, 714-721, doi:10.1016/j.mad.2008.09.011 (2008).
13Ikeno, Y., Bertrand, H. A. & Herlihy, J. T. Effects of dietary restriction and exercise on the age-related pathology of the rat. Age 20, 107-118, doi:10.1007/s11357-997-0010-4 (1997).
14McCarter, R. J. & Palmer, J. Energy metabolism and aging: a lifelong study of Fischer 344 rats. The American journal of physiology 263, E448-452 (1992).
15Heilbronn, L. K. & Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. The American journal of clinical nutrition 78, 361-369 (2003).
16Cefalu, W. T. et al. Caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): metabolic, physiologic, and atherosclerotic measures from a 4-year intervention trial. The journals of gerontology. Series A, Biological sciences and medical sciences 59, 1007-1014 (2004).
17Das, M., Gabriely, I. & Barzilai, N. Caloric restriction, body fat and ageing in experimental models. Obesity reviews : an official journal of the International Association for the Study of Obesity 5, 13-19 (2004).
18Donmez, G. & Guarente, L. Aging and disease: connections to sirtuins. Aging cell 9, 285-290, doi:10.1111/j.1474-9726.2010.00548.x (2010).
19Wu, Y. T., Wu, S. B. & Wei, Y. H. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress. Free radical research 48, 1070-1084, doi:10.3109/10715762.2014.920956 (2014).
20Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and cellular biology 27, 8807-8814, doi:10.1128/MCB.01636-07 (2007).
21Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America 105, 14447-14452, doi:10.1073/pnas.0803790105 (2008).
22Finley, L. W. et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PloS one 6, e23295, doi:10.1371/journal.pone.0023295 (2011).
23Zeng, L. et al. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PloS one 9, e88019, doi:10.1371/journal.pone.0088019 (2014).
24Meyer, L. E. et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. The Journal of biological chemistry 281, 37361-37371, doi:10.1074/jbc.M604123200 (2006).
25Schlattner, U., Tokarska-Schlattner, M. & Wallimann, T. Mitochondrial creatine kinase in human health and disease. Biochimica et biophysica acta 1762, 164-180, doi:10.1016/j.bbadis.2005.09.004 (2006).
26Ellington, W. R. & Suzuki, T. Early evolution of the creatine kinase gene family and the capacity for creatine biosynthesis and membrane transport. Sub-cellular biochemistry 46, 17-26 (2007).
27Christensen, M., Hartmund, T. & Gesser, H. Creatine kinase, energy-rich phosphates and energy metabolism in heart muscle of different vertebrates. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology 164, 118-123 (1994).
28Karkela, J., Bock, E. & Kaukinen, S. CSF and serum brain-specific creatine kinase isoenzyme (CK-BB), neuron-specific enolase (NSE) and neural cell adhesion molecule (NCAM) as prognostic markers for hypoxic brain injury after cardiac arrest in man. Journal of the neurological sciences 116, 100-109 (1993).
29Aksenov, M. Y. et al. The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer's and Pick's disease. Experimental neurology 146, 458-465, doi:10.1006/exnr.1997.6550 (1997).
30Mohsenzadegan, M. & Mirshafiey, A. The immunopathogenic role of reactive oxygen species in Alzheimer disease. Iranian journal of allergy, asthma, and immunology 11, 203-216, doi:011.03/ijaai.203216 (2012).
31Nemutlu, E. et al. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. PloS one 10, e0136556, doi:10.1371/journal.pone.0136556 (2015).
32Lin, Y. S. et al. Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. The Journal of clinical investigation 121, 1519-1523, doi:10.1172/JCI43220 (2011).
33Wen, J., Xiao, Y., Bai, Y. X. & Xu, M. Protective effect of dexmedetomidine on noise-induced hearing loss. The Laryngoscope 124, E188-193, doi:10.1002/lary.24425 (2014).
34Bielefeld, E. C., Hu, B. H., Harris, K. C. & Henderson, D. Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hearing research 207, 35-42, doi:10.1016/j.heares.2005.03.025 (2005).
35Ohlemiller, K. K., Wright, J. S. & Dugan, L. L. Early elevation of cochlear reactive oxygen species following noise exposure. Audiology & neuro-otology 4, 229-236, doi:13846 (1999).
36Henderson, D., Bielefeld, E. C., Harris, K. C. & Hu, B. H. The role of oxidative stress in noise-induced hearing loss. Ear and hearing 27, 1-19, doi:10.1097/01.aud.0000191942.36672.f3 (2006).
37Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483-495, doi:10.1016/j.cell.2005.02.001 (2005).
38Masoro, E. J. Caloric restriction and aging: an update. Experimental gerontology 35, 299-305 (2000).
39Someya, S. et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812, doi:10.1016/j.cell.2010.10.002 (2010).
40Wolosker, H., Panizzutti, R. & Engelender, S. Inhibition of creatine kinase by S-nitrosoglutathione. FEBS letters 392, 274-276 (1996).
41Criddle, D. N. et al. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. The Journal of biological chemistry 281, 40485-40492, doi:10.1074/jbc.M607704200 (2006).
42SiragEldin, E., Gercken, G., Harm, K. & Voigt, K. D. The isoelectric focusing of creatine kinase variants: I. The heterogeneity of creatine kinase in human heart cytosol and mitochondria. Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie 24, 283-292 (1986).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top