|
1Halliwell, B. Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. British journal of experimental pathology 70, 737-757 (1989). 2Liochev, S. I. & Fridovich, I. Superoxide and iron: partners in crime. IUBMB life 48, 157-161, doi:10.1080/713803492 (1999). 3Bayir, H. Reactive oxygen species. Critical care medicine 33, S498-501 (2005). 4LeDoux, S. P., Driggers, W. J., Hollensworth, B. S. & Wilson, G. L. Repair of alkylation and oxidative damage in mitochondrial DNA. Mutation research 434, 149-159 (1999). 5Stadtman, E. R. & Levine, R. L. Protein oxidation. Annals of the New York Academy of Sciences 899, 191-208 (2000). 6Nordberg, J. & Arner, E. S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free radical biology & medicine 31, 1287-1312 (2001). 7Fink, M. P. Reactive oxygen species as mediators of organ dysfunction caused by sepsis, acute respiratory distress syndrome, or hemorrhagic shock: potential benefits of resuscitation with Ringer's ethyl pyruvate solution. Current opinion in clinical nutrition and metabolic care 5, 167-174 (2002). 8Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247, doi:10.1038/35041687 (2000). 9Koubova, J. & Guarente, L. How does calorie restriction work? Genes & development 17, 313-321, doi:10.1101/gad.1052903 (2003). 10McCay, C. M. Iodized Salt a Hundred Years Ago. Science 82, 350-351, doi:10.1126/science.82.2128.350-a (1935). 11Austad, S. N. Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Experimental gerontology 24, 83-92 (1989). 12Boivin, A., Gaumer, S. & Sainsard-Chanet, A. Life span extension by dietary restriction is reduced but not abolished by loss of both SIR2 and HST2 in Podospora anserina. Mechanisms of ageing and development 129, 714-721, doi:10.1016/j.mad.2008.09.011 (2008). 13Ikeno, Y., Bertrand, H. A. & Herlihy, J. T. Effects of dietary restriction and exercise on the age-related pathology of the rat. Age 20, 107-118, doi:10.1007/s11357-997-0010-4 (1997). 14McCarter, R. J. & Palmer, J. Energy metabolism and aging: a lifelong study of Fischer 344 rats. The American journal of physiology 263, E448-452 (1992). 15Heilbronn, L. K. & Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. The American journal of clinical nutrition 78, 361-369 (2003). 16Cefalu, W. T. et al. Caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): metabolic, physiologic, and atherosclerotic measures from a 4-year intervention trial. The journals of gerontology. Series A, Biological sciences and medical sciences 59, 1007-1014 (2004). 17Das, M., Gabriely, I. & Barzilai, N. Caloric restriction, body fat and ageing in experimental models. Obesity reviews : an official journal of the International Association for the Study of Obesity 5, 13-19 (2004). 18Donmez, G. & Guarente, L. Aging and disease: connections to sirtuins. Aging cell 9, 285-290, doi:10.1111/j.1474-9726.2010.00548.x (2010). 19Wu, Y. T., Wu, S. B. & Wei, Y. H. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress. Free radical research 48, 1070-1084, doi:10.3109/10715762.2014.920956 (2014). 20Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and cellular biology 27, 8807-8814, doi:10.1128/MCB.01636-07 (2007). 21Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America 105, 14447-14452, doi:10.1073/pnas.0803790105 (2008). 22Finley, L. W. et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PloS one 6, e23295, doi:10.1371/journal.pone.0023295 (2011). 23Zeng, L. et al. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PloS one 9, e88019, doi:10.1371/journal.pone.0088019 (2014). 24Meyer, L. E. et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. The Journal of biological chemistry 281, 37361-37371, doi:10.1074/jbc.M604123200 (2006). 25Schlattner, U., Tokarska-Schlattner, M. & Wallimann, T. Mitochondrial creatine kinase in human health and disease. Biochimica et biophysica acta 1762, 164-180, doi:10.1016/j.bbadis.2005.09.004 (2006). 26Ellington, W. R. & Suzuki, T. Early evolution of the creatine kinase gene family and the capacity for creatine biosynthesis and membrane transport. Sub-cellular biochemistry 46, 17-26 (2007). 27Christensen, M., Hartmund, T. & Gesser, H. Creatine kinase, energy-rich phosphates and energy metabolism in heart muscle of different vertebrates. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology 164, 118-123 (1994). 28Karkela, J., Bock, E. & Kaukinen, S. CSF and serum brain-specific creatine kinase isoenzyme (CK-BB), neuron-specific enolase (NSE) and neural cell adhesion molecule (NCAM) as prognostic markers for hypoxic brain injury after cardiac arrest in man. Journal of the neurological sciences 116, 100-109 (1993). 29Aksenov, M. Y. et al. The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer's and Pick's disease. Experimental neurology 146, 458-465, doi:10.1006/exnr.1997.6550 (1997). 30Mohsenzadegan, M. & Mirshafiey, A. The immunopathogenic role of reactive oxygen species in Alzheimer disease. Iranian journal of allergy, asthma, and immunology 11, 203-216, doi:011.03/ijaai.203216 (2012). 31Nemutlu, E. et al. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. PloS one 10, e0136556, doi:10.1371/journal.pone.0136556 (2015). 32Lin, Y. S. et al. Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. The Journal of clinical investigation 121, 1519-1523, doi:10.1172/JCI43220 (2011). 33Wen, J., Xiao, Y., Bai, Y. X. & Xu, M. Protective effect of dexmedetomidine on noise-induced hearing loss. The Laryngoscope 124, E188-193, doi:10.1002/lary.24425 (2014). 34Bielefeld, E. C., Hu, B. H., Harris, K. C. & Henderson, D. Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hearing research 207, 35-42, doi:10.1016/j.heares.2005.03.025 (2005). 35Ohlemiller, K. K., Wright, J. S. & Dugan, L. L. Early elevation of cochlear reactive oxygen species following noise exposure. Audiology & neuro-otology 4, 229-236, doi:13846 (1999). 36Henderson, D., Bielefeld, E. C., Harris, K. C. & Hu, B. H. The role of oxidative stress in noise-induced hearing loss. Ear and hearing 27, 1-19, doi:10.1097/01.aud.0000191942.36672.f3 (2006). 37Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483-495, doi:10.1016/j.cell.2005.02.001 (2005). 38Masoro, E. J. Caloric restriction and aging: an update. Experimental gerontology 35, 299-305 (2000). 39Someya, S. et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812, doi:10.1016/j.cell.2010.10.002 (2010). 40Wolosker, H., Panizzutti, R. & Engelender, S. Inhibition of creatine kinase by S-nitrosoglutathione. FEBS letters 392, 274-276 (1996). 41Criddle, D. N. et al. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. The Journal of biological chemistry 281, 40485-40492, doi:10.1074/jbc.M607704200 (2006). 42SiragEldin, E., Gercken, G., Harm, K. & Voigt, K. D. The isoelectric focusing of creatine kinase variants: I. The heterogeneity of creatine kinase in human heart cytosol and mitochondria. Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie 24, 283-292 (1986).
|