跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施政坪
研究生(外文):Cheng-Ping Shih
論文名稱:利用微氣泡超音波技術促進藥物經由圓窗膜輸送進入內耳之研發
論文名稱(外文):The Study of Ultrasound-aided Microbubbles in Facilitating The Delivery of Drugs to The Inner Ear via The Round Window Membrane
指導教授:王智弘王智弘引用關係
指導教授(外文):Chih-Hung Wang
口試委員:王智弘馬國興黃國書劉岱瑋廖愛禾
口試委員(外文):Chih-Hung WangKuo-Hsing MaGuo-Shu HuangDai-Wei LiuAi-Ho Liao
口試日期:2015-12-04
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:微氣泡超音波內耳耳蝸圓窗膜藥物輸送
外文關鍵詞:microbubbleultrasoundinner earcochlearound window membranedrug delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:419
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
圓窗膜為介於中耳及內耳間的膜狀結構,是治療性藥物從中耳腔進入內耳的主要路徑。藥物局部送入內耳包含兩種方式:intratympanic以及intracochlear approaches。Intratympanic approach就是透過圓窗膜將藥物輸送進入內耳。近年來,微氣泡超音波已廣泛使用在影像造影及藥物、基因的輸送,本研究目的在於研究微氣泡超音波是否能提升圓窗膜的通透性,以促進藥物自中耳腔輸送進入內耳。本實驗室使用氣體為核心,外覆白蛋白之微氣泡。以天竺鼠做為實驗動物模式,讓其鼓泡(tympanic bulla)充滿微氣泡及biotin–fluorescein isothiocyanate conjugates(biotin-FITC)的混合物,在不同的試驗條件下(包括不同超音波作用時間的實驗組或是單純浸泡藥物於圓窗的控制組),評估微氣泡超音波將biotin-FITC輸送入內耳的濃度。此外,我們使用Alexa Fluor 488-conjugated phalloidin做為追蹤的tracer,觀察微氣泡超音波作用在圓窗膜後所產生的效應。我們也使用gentamicin-Texas Red conjugates 以及gentamicin免疫螢光的實驗方式來評估內耳毛細胞uptake此aminoglycosides類藥物的情況。期間,以聽性腦幹反應檢查來評估微氣泡超音波是否造成動物聽力閾值的改變。研究結果顯示,相較於單純浸泡圓窗的控制組,微氣泡超音波可有效增加biotin-FITC進入內耳的效率約3.5到38倍。以Alexa Fluor 488-conjugated phalloidin做為tracer,可以看到圓窗膜在微氣泡超音波作用後立即增加其通透度; 內耳毛細胞對gentamicin的攝入也因微氣泡超音波的作用下而顯著提升; 聽力閾值於微氣泡超音波作用後並無顯著改變。我們驗證微氣泡超音波作用於圓窗膜可明顯提升內耳的藥物輸送,提供未來臨床內耳藥物輸送治療策略的重要參考依據。目前正在進行研究之初步結果顯示微氣泡超音波能幫助類固醇藥物dexamethasone及抗氧化劑N-acetylcysteine局部輸送至內耳,因而提升藥物降低噪音性聽損之效用。
The round window membrane (RWM) acts as a barrier between the middle ear and cochlea and can serve as a crucial route for therapeutic medications entering the inner ear via middle ear applications. The approach in local delivery of drugs to inner ear includes intratympanic and intracochlear approach. The intratympanic approach has the advantage of no insult to inner ear structure and function in comparison of the intracochlear approach. Drug delivery via intratympanic approach depends on the permeation of round window membrane. Microbubbles (MBs) ultrasound is a promising technique that can promote drug delivery but was never applied to inner ear drug delivery. In this study, we targeted the practical application of MB ultrasound on increasing the RWM permeability for facilitating drug or medication delivery to the inner ear. Using biotin–fluorescein isothiocyanate conjugates (biotin–FITC) as delivery agents and guinea pig animal models, we showed that MB ultrasound exposure can improve the inner ear system use of biotin–FITC delivery via the RWM by approximately 3.5 to 38 times that of solely soaking biotin–FITC around the RWM for spontaneous diffusion. We also showed that there was significant enhancement of hair cell uptake of gentamicin in animals whose tympanic bullas were soaked with MB-mixed gentamicin–Texas Red or gentamicin and exposed to ultrasound. Furthermore, increased permeability of the RWM from acoustic cavitation of MBs could also be visualized immediately following ultrasound exposure by using Alexa Fluor 488-conjugated phalloidin as a tracer. Most importantly, such applications had no resulting damage to the integrity of the RWM or deterioration of the hearing thresholds assessed by auditory brainstem responses. The findings provide a basis for MB ultrasound-mediated techniques with therapeutic medication delivery to the inner ear for future application in humans. The next issues of experiments are to investigate the benefit of local drug delivery from MB ultrasound in the animal model of inner ear disease. The preliminary results in the ongoing experiments revealed this technique could promote dexamethasone and N-acetylcysteine delivering to inner ear and thus enhance the drug action to ameliorate noise-induced hearing loss.
第一章、摘要… 1
第二章、緒論… 5
第三章、目的…15
第四章、材料與方法…17
第一節、實驗動物與研究設計…17
第二節、微氣泡以及輸送至內耳試劑的準備…18
第三節、Gentamicin與Texas Red的結合…18
第四節、超音波作用…19
第五節、手術步驟…19
第六節、Biotin-FITC螢光強度的量測…20
第七節、樣本準備與收集…21
第八節、免疫螢光染色…21
第九節、共軛焦顯微鏡檢…22
第十節、聽性腦幹反應檢查…23
第五章、結果…24
第一節、微氣泡超音波可促進biotin-FITC從中耳腔輸送至內耳…24
第二節、微氣泡超音波的蝕穴效應可增加圓窗膜通透性…25
第三節、微氣泡超音波作用後圓窗膜通透性的變化…26
第四節、不同模式微氣泡超音波作用可以提升內耳藥物輸送效率高達3.5到38倍…27
第五節、微氣泡超音波可促進gentamicin從中耳腔輸送至內耳…28
第六節、微氣泡超音波的作用不會傷害聽力…29
第六章、討論…39
第七章、結論…43
第八章、目前實驗結果及後續實驗方向…44
第九章、參考文獻…51
附錄一、刊載於“Journal of Controlled Release”雜誌全文…59

1.Wilson WR, Byl FM, Laird N. The efficacy of steroids in the treatment of idiopathic sudden hearing loss. A double-blind clinical study. Arch Otolaryngol 1980; 106:772–776.
2.Conlin AE, Parnes LS. Treatment of sudden sensorineural hearing loss. I. A systemic review. Arch Otolaryngol Head Neck Surg 2007; 133:573–581.
3.Juhn S, Rybak L. Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol 1981; 91: 529–534.
4.Postema RJ, Kingma CM, Wit HP, et al. Intratympanic gentamicin therapy for control of vertigo in unilateral Meniere’s disease: a prospective, doubleblind, randomized, placebo-controlled trial. Acta Otolaryngol 2008; 128:876–880.
5.Hsieh LC, Lin HC, Tsai HT, et al. High-dose intratympanic gentamicin instillations for treatment of Meniere’s disease: long term results. Acta Otolaryngol 2009; 129:1420–1424.
6.Kyrodimos E, Aidonis I, Sismanis A, et al. Hearing results following intratympanic gentamicin perfusion for Meniere’s disease. J Laryngol Otol 2009;123:379–382.
7.Derebery MJ, Fisher LM, Berliner K, et al. Outcomes of endolymphatic shunt surgery for Meniere’s disease: comparison with intratympanic gentamicin on vertigo control and hearing loss. Otol Neurotol 2010; 31:649–655.
8.Herraiz C, Plaza G, Aparicio JM, et al. Transtympanic steroids for Meniere’s disease. Otol Neurotol 2010; 31:162–167.
9.Battaglia A, Burchette R, Cueva R. Combination therapy (intratympanic dexamethasonethigh-dose prednisone taper) for the treatment of idiopathic sudden sensorineural hearing loss. Otol Neurotol 2008; 29:453–460.
10.Ahn JH, Yoo MH, Yoon TH, et al. Can intratympanic dexamethasone added to systemic steroids improve hearing outcome in patients with sudden deafness? Laryngoscope 2008; 188:279–282.
11.Han C-S, Park J-R, Boo S-H, et al. Clinical efficacy of initial intratympanic steroid treatment on sudden sensorineural hearing loss with diabetes. Otolaryngol Head Neck Surg 2009; 141:572–578.
12.Hong SM, Park CH, Lee JH. Hearing outcomes of daily intratympanic dexamethasone alone as a primary treatment modality for ISSHL. Otolaryngol Head Neck Surg 2009; 141:579–583.
13.Kara E, Cetik F, Tarkan O, et al. Modified intratympanic treatment for idiopathic sudden sensorineural hearing loss. Eur Arch Otorhinolaryngol 2010;267:701–707.
14.Topak M, Sahin-Yilmaz A, Ozdoganoglu T, et al. Intratympanic methylprednisolone injections for subjective tinnitus. J Laryngol Otol 2009; 123:1221–1225.
15.She W, Dai Y, Du X, et al. Treatment of subjective tinnitus: a comparative clinical study of intratympanic steroid injections vs. oral carbamazepine. Med Sci Monit 2009; 15:135–139.
16.Silverstein H, Jackson LE, Rosenberg SI. Silverstein Microwick for treatment of inner ear disease. Oper Tech Otolaryngol Head Neck Surg 2001; 12:144–147.
17.Weisskopf P, Hoffer ME, Kopke RD, et al. Microdose gentamicin delivered via the round window microcatheter: a therapeutic option in Meniere’s disease. Oper Tech Otolaryngol Head Neck Surg 2001; 12:154–156.
18.Borden RC, Saunders JE, Berryhill WE, et al. Hyaluronic acid hydrogel sustains the delivery of dexamethasone across the round window membrane. Audiol Neurootol 2010; 16:1–11.
19.Wang X, Dellamary L, Fernandex R, et al. Dose-dependent sustained release of dexamethasone in inner ear cochlear fluids using a novel local delivery approach. Audiol Neurotol 2009; 14:393–401.
20.Kingma GG, Miller JM, Myers MW. Chronic drug infusion into the scala tympani of the guinea pig cochlea. J Neurosci Methods 1992; 45:127–134.
21.Brown JN, Miller JM, Altschuler RA, et al. Osmotic pump implant for chronic infusion of drugs into the inner ear. Hear Res 1993; 70:167–172.
22.Prieskorn DM, Miller JM. Technical report: chronic and acute intracochlear infusion in rodents. Hear Res 2000; 140:212–215.
23.Kassan DG, Lynch AM, Stiller MJ. Physical enhancement of dermatologic drug delivery: Iontophoresis and phonophoresis. J Am Acad Dermatol 1996;34:657–666.
24.Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008;60:1153-1166.
25.Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968;3:356–366.
26.Wei K, Le E, Bin JP, Coggins M, Thorpe J, Kaul S. Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol 2001;37:1135–1140.
27.Rim SJ, Leong-Poi H, Lindner JR, Couture D, Ellegala D, Mason H, Durieux M, Kassel NF, Kaul S. Quantification of cerebral perfusion with “Real-time” Contrast-enhanced ultrasound. Circulation 2001;104:2582–2587.
28.Christiansen JP, Leong-Poi H, Amiss LR, Drake DB, Kaul S, Lindner JR. Skin perfusion assessed by contrast ultrasound predicts tissue survival in a free flap model. Ultrasound Med Biol 2002; 28:315–320.
29.Dawson D, Vincent MA, Barrett EJ, Kaul S, Clark A, Leong-Poi H, Lindner JR. Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound. Am J Physiol Endocrinol Metab 2002;282:E714–20.
30.Paefgen V, Doleschel D, Kiessling F. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol. 2015;6:197.
31.Kondo T, Misik V, Riesz P. Effect of gas-containing microspheres and echo contrast agents on free radical formation by ultrasound. Free Radic Biol Med 1998;25:605–612.
32.Miller DL, Gies RA. The interaction of ultrasonic heating and cavitation in vascular bioeffects on mouse intestine. Ultrasound Med Biol 1998;24: 123–128.
33.van Wamel A, Kooiman K, Emmer M, ten Cate FJ, Versluis M, de Jong N. Ultrasound microbubble induced endothelial cell permeability. J Control Release 2006;116:e100–102.
34.Keyhani K, Guzman HR, Parsons A, Lewis TN, Prausnitz MR. Intracellular drug delivery using low-frequency ultrasound: Quantification of molecular uptake and cell viability. Pharm Res 2001; 18:1514–1520.
35.Nie F, Xu HX, Tang Q, Lu MD. Microbubble-enhanced ultrasound exposure improves gene transfer in vascular endothelial cells. World J Gastroenterol 2006;12:7508–7513.
36.Lammertink BH, Bos C, Deckers R, Storm G, Moonen CT, Escoffre JM. Sonochemotherapy: from bench to bedside. Front Pharmacol. 2015;6:138.
37.Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol. 2013;3:39-44.
38.Hallow DM, Mahajan AD, Prausnitz MR. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Control Release 2007;118:285–293.
39.Kodama T, Tan PH, Offiah I, Partridge T, Cook T, George AJ, Blomley MJ. Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med Biol 2005;31:1683–1691.
40.Culp WC, Porter TR, McCowan TC, Roberson PK, James CA, Matchett WJ, Moursi M. Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs. J Vasc Interv Radiol 2003;14:343–347.
41.Pagola J, Ribo M, Alvarez-Sabin J, Lange M, Rubiera M, Molina CA. Timing of recanalization after microbubble-enhanced intravenous thrombolysis in basilar artery occlusion. Stroke 2007;38:2931–2934.
42.Nesser HJ, Karia DH, Tkalec W, Pandian NG. Therapeutic ultrasound in cardiology. Herz 2002;27:269–278.
43.Goycoolea MV, Lundman L. Round window membrane. Structure function and permeability: a review. Microsc Res Tech. 1997;36:201-211.
44.Swan SE.E., Mescher M.J., W.F. Sewell, Swan EE, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev. 2008;60:1583–1599.
45.McCall AA, Swan EE, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. Drug delivery for treatment of inner ear disease: current state of knowledge Ear Hear. 2010;31:156–165.
46.Salt AN, Plontke SK. Principles of local drug delivery to the inner ear. Audiol Neurotol 2009;14:350-360.
47.Shi X. Physiopathology of the cochlear microcirculation. Hear Res 2011;282:10-24.
48.Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery- a general review. Expert Opin Drug Deliv 2004;1:37-56.
49.Steyger PS, Rehling PJ, Hordichok A, Dai CF. Uptake of gentamicin by bullfrog saccular hair cells in vitro. J Assoc Res Otolaryngol 2003;4:565-78.
50.Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY. Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet 2008;17:3987-4000.
51.Raymond SB, Skoch J, Hynynen K, Bacskai BJ. Multiphoton imaging of ultrasound/Optison mediated cerebrovascular effects in vivo. J Cereb Blood Flow Metab 2007;27:393-403.
52.Lin RJ, Krall R, Westerberg BD, Chadha NK, Chau JK. Systematic review and meta-analysis of the risk factors for sudden sensorineural hearing loss in adults. Laryngoscope 2012; 122:624-635.
53.Kuhn M, Heman-Ackah SE, Shaikh JA, Roehm PC. Sudden sensorineural hearing loss: a review of diagnosis, treatment, and prognosis. Trends Amplif 2011; 15:91-105.
54.Yoo J, Hamilton SJ, Angel D, Fung K, Franklin J, Parnes LS, Lewis D, Venkatesan V, Winquist E. Cisplatin otoprotection using transtympanic L-N- acetylcysteine: A pilot randomized study in head and neck cancer patients. Laryngoscope. 2014; 124:E87-94.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊