跳到主要內容

臺灣博碩士論文加值系統

(44.192.114.32) 您好!臺灣時間:2022/07/02 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔晏平
研究生(外文):Yen-Ping Kung
論文名稱:產前全氟碳化物暴露可能改變八歲孩童時期肺功能
論文名稱(外文):Intra-utero Exposure to Perfluoroalkyl Substances May Affect Lung Function Development at Eight Years of Age
指導教授:陳保中陳保中引用關係
指導教授(外文):Pau-Chung Chen
口試委員:郭育良李永凌陳美惠陳啟信
口試委員(外文):Yue-Liang GuoYungling LeeMei-Huei ChenChi-Hsien Chen
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:40
中文關鍵詞:產前暴露全氟碳化物肺功能肺部發展過敏疾病
外文關鍵詞:prenatal exposureperfluoroalkyl substanceslung functionlung developmentallergic disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:
全氟碳化物是環境中常見的環境中持續的有機汙染物,次分類包括有全氟辛酸(PFOA)、全氟辛烷磺酸鹽(PFOS)、全氟壬酸(PFNA)及全氟十一酸(PFUA)等。動物實驗證實全氟碳化物會影響改變肺部發展及發炎反應。然而,產前的暴露與孩童時期的暴露全氟碳化物對孩童肺部影響程度大小目前尚不清晰。
研究目的:
本篇研究目的在於探討產前暴露和孩童時期暴露到不同的全氟碳化物,對於孩童肺部發展的影響。
研究方法:
從台灣出生世代追蹤調查研究中,收案165位孩童,從出生時的臍帶血測量其全氟碳化物濃度,在孩童八歲時收取血清再測量其全氟碳化物濃度,方法是以極致液相層析/串聯式質譜儀作分析。並在孩童八歲時做肺功能檢查及兒童氣喘及過敏國際研究問卷調查。
結果:
在165位收案孩童中,臍帶血中的PFOA、PFOS、PFNA和PFUA濃度分別為2.4, 6.4, 6.0, 15.4奈克每毫升。而八歲時的血清中PFOA、PFOS、PFNA和PFUA濃度則分別為2.7, 5.9, 0.6, 0.3奈克每毫升。八歲時期的肺功能平均第一秒用力呼氣量 (FEV1)、用力肺活量( FVC)、最大呼氣流率( PEF)及用力呼氣一秒率(FEV1/FVC)分別為1679毫升、1835毫升、3846毫升每秒及92.0%。本研究發現臍帶血中的PFOA、PFOS、PFNA和PFUA與肺功能的減少有關連性,對於減少肺功能的一致性最高者為臍帶血中PFOS濃度,對於次分類中的較輕出生體重孩童和過敏性鼻炎孩童的肺功能具有顯著的負向影響。
結論:
我們的世代研究發現PFOA、PFOS、PFNA和PFUA在臍帶血中濃度的幾何平均皆大於八歲孩童時期血清濃度。臍帶血中的PFOS濃度對孩童時期的第一秒用力呼氣量 (FEV1)、用力肺活量( FVC)、最大呼氣流率( PEF)有負向影響的趨勢,其中較輕出生體重和有過敏性鼻炎的孩童會有顯著影響。產前的全氟碳化物對於孩童未來的肺部發展可能扮演了重要的角色。

Background:
The perfluoroalkyl substances (PFAS), such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUA), are common persistent organic pollutants in the environment. Animal studies had indicated PFAS would influence lung development and inflammatory responses. However, the effect of whether prenatal or childhood PFAS exposures affect more children’s lung function is unclear.
Aim:
The purpose of this study is to investigate the relationships between intra-utero exposure and childhood-exposure to PFAS and lung function development at children stage.
Methods:
In total, 165 children were recruited from the Taiwan Birth Panel Study (TBPS). Cord blood plasma and children’s serum while they’re eight years old was collected. PFAS were analyzed by ultra-high-performance liquid chromatography/tandem mass spectrometry. Until reached eigth years of age, we enrolled these children to have lung function examinations and detailed questionnaire.
Results:
Among 165 study children, the mean concentrations of PFOA, PFOS, PFNA and PFUA in cord blood were 2.4, 6.4, 6.0, 15.4 ng/mL, respectively. The concentrations in eight-year-old serum were 2.7, 5.9, 0.6, 0.3ng/mL, respectively. At eight years of age, their mean values of FEV1 (forced expiratory volume in 1 second), FVC (forced vital capacity), PEF (peak expiratory flow) and FEV1/FVC were 1679 mL, 1835 mL, 3846 mL/sec and 92.0 percent, respectively. PFOA, PFOS, PFNA and PFUA levels in cord blood were inversely associated with FEV1, FVC and PEF values. PFOS in cord blood is the most consistently correlated to decreasing lung function even after adjusting confounding factors. PFOS significantly affects lung function in subgroup of lower birth weight and allergic rhinitis.
Conclusions:
Our cohort study suggested that the concentrations of PFOA, PFOS, PFNA and PFUA were geometrically higher in cord blood than in eight-year-old serum. There are also trends noted between intrauterine PFOS and decreasing FEV1, FVC and PEF in children stage, especially in subgroups of lower birth weight and allergic rhinitis. Intrauterine PFAS may play an important role in children’s lung development.

口試委員會審定書 1
National Taiwan University Thesis Verification Form 2
中文摘要 3
Abstract 5
I. Introduction 9
II. Methods 12
III. Results 17
IV. Discussion 20
V. Conclusions 26
VI. References 27

Abbott BD, Wolf CJ, Schmid JE, Das KP, Zehr RD, Helfant L, Nakayama S, Lindstrom AB, Strynar MJ, Lau C. Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol. Sci. 2007;98:571-581.
Bolt RJ, van Weissenbruch MM, Lafeber HN, Delemarre-van de Waal HA. Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol. 2001 Jul;32(1):76-91.
Chawes BL. Upper and lower airway pathology in young children with allergic- and non-allergic rhinitis. Dan Med Bull. 2011 May;58(5):B4278. Review.
Chen MH, Ha EH, Wen TW, Su YN, Lien GW, Chen CY, et al. 2012. Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PloS one 7:e42474.
Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, et al. 2012. Prenatal pfos exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reproductive toxicology 33:538-545.
DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. 2012. Immunotoxicity of perfluorinated compounds: Recent developments. Toxicologic pathology 40:300-311.
Dong GH, Tung KY, Tsai CH, Liu MM, Wang D, Liu W, et al. 2013. Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of taiwanese children. Environmental health perspectives 121:507-513, 513e501-508.
Eriksson U, Kärrman A. World-Wide Indoor Exposure to Polyfluoroalkyl Phosphate Esters (PAPs) and other PFASs in Household Dust. Environ Sci Technol. 2015 Dec 15;49(24):14503-11.
Fei C, McLaughlin JK, Lipworth L, Olsen J. 2010. Prenatal exposure to pfoa and pfos and risk of hospitalization for infectious diseases in early childhood. Environmental research 110:773-777.
Gibson AM, Reddington C, McBride L, Callanan C, Robertson C, Doyle LW. Pediatr Pulmonol. 2015 Oct;50(10):987-94.
Gilbert WM, Danielsen B, Pregnancy outcomes associated with intrauterine growth restriction. Am J Obstet Gynecol. 2003 Jun;188(6):1596-9
Grasty RC, Bjork JA, Wallace KB, Wolf DC, Lau CS, Rogers JM. 2005. Effects of prenatal perfluorooctane sulfonate (pfos) exposure on lung maturation in the perinatal rat. Birth defects research Part B, Developmental and reproductive toxicology 74:405-416.
Guerra S, Sherrill DL, Martinez FD, Barbee RA. 2002. Rhinitis as an independent risk factor for adult-onset asthma. Journal of Allergy and Clinical Immunology 109:419-425.
Harada K, Koizumi A, Saito N, Inoue K, Yoshinaga T, Date C, et al. 2007. Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in japan. Chemosphere 66:293-301.
Hsieh CJ, Hsieh WS, Su YN, Liao HF, Jeng SF, Taso FM, et al. 2011. The taiwan birth panel study: A prospective cohort study for environmentally- related child health. BMC research notes 4:291.
Jaakkola, J.J., Parise, H., Kislitsin, V., Lebedeva, N.I. and Spengler, J.D. (2004) Asthma, wheezing, and allergies in Russian schoolchildren in relation to new surface materials in the home, Am. J. Public Health, 94, 560–562.
Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. 2007. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicological sciences : an official journal of the Society of Toxicology 99:366-394.
Lien GW, Wen TW, Hsieh WS, Wu KY, Chen CY, Chen PC. 2011. Analysis of perfluorinated chemicals in umbilical cord blood by ultra-high performance liquid chromatography/tandem mass spectrometry. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 879:641-646.
Maisonet M, Terrell ML, McGeehin MA, Christensen KY, Holmes A, Calafat AM, et al. 2012. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in british girls. Environmental health perspectives 120:1432-1437.
Manise M HG, Van Crombruggen K, Schleich F, Bachert C, et al. 2013. Sputum ige and cytokines in asthma: Relationship with sputum cellular profile. PloS one 8:e58388.
Manzano-Salgado CB, Casas M, Lopez-Espinosa MJ, Ballester F, Basterrechea M, Grimalt JO, Jiménez AM, Kraus T, Schettgen T, Sunyer J, Vrijheid M. Environ Res. 2015 Oct;142:471-8.
M. J. Mendell. 2007 Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review. Indoor Air 2007; 17: 259–277
Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. 2005. Standardisation of spirometry. The European respiratory journal 26:319-338.
Okada E, Sasaki S, Saijo Y, Washino N, Miyashita C, Kobayashi S, et al. 2012. Prenatal exposure to perfluorinated chemicals and relationship with allergies and infectious diseases in infants. Environmental research 112:118-125.
Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. 2007. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental health perspectives 115:1298-1305.
Radhika Kajekar, Environmental factors and developmental outcomes in the lung. Pharmacology & Therapeutics 114 (2007) 129-145
Richard Harding, Gert Maritz, Maternal and fetal origins of lung disease in adulthood. Seminars in Fetal & Neonatal Medicine 17 (2012) 67-72
Rosalind J. Wright, Perinatal stress and early life programming of lung structure and function. Biological Psychology 84 (2010) 46-56
Ryu MH, Jha A, Ojo OO, Mahood TH, Basu S, Detillieux KA, Nikoobakht N, Wong CS, Loewen M, Becker AB, Halayko AJ, Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation. Am J Physiol Lung Cell Mol Physiol. 2014 Nov 15;307(10):L765-74.
Suzuki S, Tsubochi H, Darnel A, Suzuki T, Sasano H, Krozowski ZS, Kondo T, Expression of 11 beta-hydroxysteroid dehydrogenase type 1 in alveolar epithelial cells in rats, Endocr. J. 50 (4) (2003) 445–451.
Tore´ n K, Olin AC, Hellgren J, Hermansson BA. Rhinitis increase the risk for adult-onset asthma: a Swedish population-based case-control study (MAPstudy). Respir Med 2002; 96:635–641.
Wang IJ, Hsieh WS, Chen CY, Fletcher T, Lien GW, Chiang HL, et al. 2011. The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environmental research 111:785-791.
Yang Q, Xie Y, Alexson SEH, Nelson BD, DePierre JW. 2002. Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodila- tion caused by peroxisome proliferators in mice. Biochem. Pharmacol. 63, 1893–1900.
Ye L, Zhao B, Cai XH, Chu Y, Li C, Ge RS. 2012. The inhibitory effects of perfluoroalkyl substances on human and rat 11beta-hydroxysteroid dehydrogenase 1. Chemico-biological interactions 195:114-118.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 值班負荷對內科醫師壓力反應的影響評估
2. 胎兒全氟碳化物暴露與兒童成長及發展
3. 兒童塑化劑暴露對其肺功能影響
4. 中藥小青龍湯的使用能降低小兒氣喘的住院率
5. 海洛因成癮患者長期健康影響:美沙冬治療、降血脂斯達汀類藥物與死亡之風險評估
6. 一、產前暴露酚類化合物與兒童兩歲與七歲時神經發展影響之相關性二、頭髮中皮質醇作為慢性壓力生物指標
7. 一、早期塑化劑暴露與孩童智力表現之相關探討;二、產前全氟碳化物暴露與孩童注意力缺陷過動症症狀之相關探討
8. 輪班工作與攝護腺癌風險:系統性回顧與統合分析
9. 失智症之暴露危險因子與相關保護因子研究:以慢性C型肝炎感染、高血壓與糖尿病患者為例
10. 一、母親懷孕期間二手菸暴露與幼童語言發展二、臍帶血的代謝質體分析與胎兒生長發育之關聯探討
11. 多氯聯苯及多氯呋喃中毒者及其子代之長期健康效應研究
12. I.接近足月早產兒於出生18個月時降低母親健康相關生活品質:一個以台灣人口為基礎的世代研究II.接近足月早產兒母親健康相關生活品質的縱向變化
13. 全氟碳化合物在大鼠和人類依生理依據之藥物動力學模型研究
14. 輪班工作對勞工健康之影響研究
15. 探討血清全氟碳化合物與肝功能、甲狀腺功能、血糖調控與心血管疾病危險因子之相關