跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/05 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林政宇
研究生(外文):Cheng-Yu Lin
論文名稱:探討小孢子靈芝免疫調節蛋白GMI誘導結腸直腸癌細胞死亡機制
論文名稱(外文):The assessment of GMI-induced anti-tumor effect in human colorectal cancer
指導教授:張榮善
指導教授(外文):Jungshan Chang
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:結腸直腸癌小孢子靈芝免疫調節蛋白細胞凋亡
外文關鍵詞:Colorectal cancerGMIApoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:668
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
在罹患結腸直腸癌病人中除了手術切除外,在化療、標靶治療及放射性化療通常令患者放棄療程。然而,這些類型的治療通常帶來相當大的副作用,導致患者生理和心理上的痛苦,甚至惡化病人的健康狀況。本項研究的目的是探討從小孢子靈芝所分離出來的真菌免疫調節蛋白(Ganoderma microsporum immunomodulatory protein , GMI)對HCT-15結腸直腸癌細胞的毒殺作用以及其導致細胞凋亡的可能機制。初步實驗結果發現隨著GMI濃度的增加,HCT-15細胞的細胞形態明顯改變,也發現GMI會增加HCT-15細胞活性氧物質(ROS)的產生,同時表現出活化的Caspase 3、Caspase 7、PARP,最後導致細胞凋亡。此外,GMI與5-FU的聯合治療的細胞實驗中揭示GMI具有拮抗作用,有效殺死HTC-15癌細胞。同時使用GMI可以降低5-FU的劑量需求以毒殺HTC-15癌細胞。我們利用MTAMs的小鼠模式與斑馬魚模式進行體內實驗,發現GMI也會誘導HCT-15細胞死亡,然而此濃度下的GMI並不會損傷小鼠器官或組織之病變。除了老鼠動物模式外,GMI 對斑馬魚胚胎發育的影響,亦被評估。結果顯示,GMI 濃度高於0.5M對斑馬魚胚胎發育是有影響的。總結,GMI有可能是具治療大腸癌的重組免疫蛋白藥物之一。

Surgery is always the first option to treat various forms of solid cancers, such as colorectal cancers (CRCs). Following surgical removal of tumors from patients with CRCs, chemotherapy, targeted therapy or radiotherapy will normally give in to patients. However, those therapeutic managements usually bring enormously adversary side effects, leading to unpleasant physiological and psychological suffering in patients or even to deteriorate patients’ health condition. Therefore, to find the alternative therapeutic candidates with fewer side effects is encouraged. In this study, we would like to evaluate the effects of GMI, a novel constituent isolated from the leaves of Ganoderma microsporum, on cell proliferation of human colorectal cancer HCT-15 cells and then unbraid the underlying GMI-mediated potential killing mechanisms. Our preliminary data showed that GMI alter the changes in cell morphology of HCT-15 cells. We also noticed that GMI induced cell stress by increased reactive oxygen species (ROS) production from HCT-15 cells. Furthermore, GMI also decreased cell survival and proliferations resulted in the activations of Caspase 3, Caspase 7, PARP, leading to DNA fragmentation coupled with cell apoptosis. In addition to sole treatment, we also evaluated the therapeutic effects of the combined treatments of GMI plus 5-FU on CRCs. The results suggested that combined treatment displayed more effectively to inhibit HTC-15 cell growth with lower the dosage requirement of 5-FU. Furthermore, we also evaluate the therapeutic effects of GMI on MTAMs animal models and zebrafish. The results demonstrated that the numbers of HCT-15 cells in MTAM chambers were reduced after exposure to GIMS. Moreover, no cytotoxic effects were observed by examinations of animal organs and tissues. In the fish model, we noticed that the concentration of GMI more than 0.5M GMI possessed toxicity in zebrafish embryonic development experiments. Taking all together, it suggests that GMI is a potential candidate for treatment of colorectal cancers in patients but its cytotoxic mechanism needs to be further characterized.

目   錄
目錄 I
圖次目錄 III
表次目錄 IV
縮寫表 V
摘要 VI
Abstract VIII
第一章 緒論 1
第二章 文獻探討 3
第一節 何謂結腸直腸癌 4
第二節 靈芝的藥理研究與成分發現 5
第三節 粒線體與細胞凋亡 9
第四節 活性氧物質和細胞凋亡的關係 12
第五節 實驗目的 13
第三章 實驗材料與方法 14
第一節 實驗材料 15
第二節 實驗方法 21
第四章 實驗結果 30
第一節 探討GMI對HCT-15細胞的毒殺性及死亡途徑 31
第二節 探討GMI在動物體裡的抗癌效果及毒性測試 34
第五章 結論與討論 35
第六章 參考文獻 40
第七章 圖表 44
附表一 56
附表二 58
附表三 59

圖 次 目 錄
圖2-1 GMI的三級結構,由四個單體組合而成 8
圖2-2 LZ-8、G. Tsugae和G. microsporum序列 8
圖2-3 LZ-8、金針菇免疫調節蛋白(FIP-fve)和GMI的立體構造 9
圖2-4研究設計架構圖 13
圖3-1 MTT試劑還原示意圖 16
圖3-2老鼠實驗設計圖示 28
圖6-1 HCT-15細胞在經過GMI不同濃度處理後的形態 45
圖6-2 GMI對HCT-15細胞的毒殺情形 46
圖6-3 GMI誘導HCT-15細胞的凋亡 47
圖6-4 GMI誘導HCT-15細胞內產生ROS的情形 48
圖6-5 GMI對HCT-15細胞內caspase -3,-7、PARP蛋白表現 49
圖6-6 GMI與 5-FU對HCT-15細胞毒殺效果 50
圖6-7 GMI對於MTAMs模式小鼠治療體重及肝臟重量變化 51
圖6-8小鼠背後皮下血管分布分析 52
圖6-9斑馬魚形態與存活率 55

表 次 目 錄
表6-1小鼠血液生化分析 53
表6-2小鼠全血液分析 54


Arends, M. J., Morris, R. G., & Wyllie, A. H. (1990). Apoptosis. The role of the endonuclease. Am J Pathol, 136(3), 593-608.
Arends, M. J., & Wyllie, A. H. (1991). Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol, 32, 223-254.
Ashkenazi, A. (2008). Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov, 7(12), 1001-1012. doi:10.1038/nrd2637
Atlante, A., Gagliardi, S., Minervini, G. M., Ciotti, M. T., Marra, E., & Calissano, P. (1997). Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation. J Neurochem, 68(5), 2038-2045.
Debatin, K. M., Poncet, D., & Kroemer, G. (2002). Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene, 21(57), 8786-8803. doi:10.1038/sj.onc.1206039
Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271-277.
Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35(4), 495-516. doi:10.1080/01926230701320337
Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev, 23(5), 599-622. doi:10.1210/er.2001-0039
Haakfrendscho, M., Kino, K., Sone, T., & Jardieu, P. (1993). Ling Zhi-8 - a Novel T-Cell Mitogen Induces Cytokine Production and up-Regulation of Icam-1 Expression. Cellular Immunology, 150(1), 101-113. doi:DOI 10.1006/cimm.1993.1182
Hawley, T. S., & Hawley, R. G. (2011). Flow cytometry protocols (3rd ed.). New York, NY: Humana Press.
Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770-776. doi:10.1038/35037710
Hsin, I. L., Ou, C. C., Wu, M. F., Jan, M. S., Hsiao, Y. M., Lin, C. H., & Ko, J. L. (2015). GMI, an Immunomodulatory Protein from Ganoderma microsporum, Potentiates Cisplatin-Induced Apoptosis via Autophagy in Lung Cancer Cells. Mol Pharm, 12(5), 1534-1543. doi:10.1021/mp500840z
Hsin, I. L., Ou, C. C., Wu, T. C., Jan, M. S., Wu, M. F., Chiu, L. Y., . . . Ko, J. L. (2011). GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells. Autophagy, 7(8), 873-882.
Hyun, J. H., Kim, S. C., Kang, J. I., Kim, M. K., Boo, H. J., Kwon, J. M., . . . Kang, H. K. (2009). Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. Biol Pharm Bull, 32(10), 1760-1764.
Jacobson, M. D., Weil, M., & Raff, M. C. (1997). Programmed cell death in animal development. Cell, 88(3), 347-354. doi:Doi 10.1016/S0092-8674(00)81873-5
Kino, K., Yamashita, A., Yamaoka, K., Watanabe, J., Tanaka, S., Ko, K., . . . Tsunoo, H. (1989). Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem, 264(1), 472-478.
Kohler, C., Orrenius, S., & Zhivotovsky, B. (2002). Evaluation of caspase activity in apoptotic cells. Journal of Immunological Methods, 265(1-2), 97-110. doi:Pii S0022-1759(02)00073-X
Doi 10.1016/S0022-1759(02)00073-X
Lim, Y. J., Rhee, J. C., Bae, Y. M., & Chun, W. J. (2007). Celecoxib attenuates 5-fluorouracil-induced apoptosis in HCT-15 and HT-29 human colon cancer cells. World J Gastroenterol, 13(13), 1947-1952.
Lin, L. C., Shu, Y. C., Yang, J. C., Shie, H. S., Lee, S. Y., & Chen, C. C. (2014). Nano-porous poly-l-lactic acid microtube array membranes. Current Nanoscience, 10 (2), 227–234. doi:10.2174/1573413709999131209124001
Lin, T. L. (2009). Immunomodulatory protein cloned from ganoderma microsporum: Google Patents.
Lin, W. H., Hung, C. H., Hsu, C. I., & Lin, J. Y. (1997). Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. Journal of Biological Chemistry, 272(32), 20044-20048. doi:DOI 10.1074/jbc.272.32.20044
Liu, C. J., Chiang, C. C., & Chiang, B. H. (2012). The elicited two-stage submerged cultivation of Antrodia cinnamomea for enhancing triterpenoids production and antitumor activity. Biochemical Engineering Journal, 64, 48-54. doi:10.1016/j.bej.2012.03.003
Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr, 134(12 Suppl), 3479S-3485S.
Lombardi, L., Ceccarelli, N., Picciarelli, P., & Lorenzi, R. (2007). DNA degradation during programmed cell death in Phaseolus coccineus suspensor. Plant Physiol Biochem, 45(3-4), 221-227. doi:10.1016/j.plaphy.2007.01.014
Mohapatra, S., Chu, B., Zhao, X., & Pledger, W. J. (2005). Accumulation of p53 and reductions in XIAP abundance promote the apoptosis of prostate cancer cells. Cancer Res, 65(17), 7717-7723. doi:10.1158/0008-5472.CAN-05-0347
Nita, M. E., Nagawa, H., Tominaga, O., Tsuno, N., Fujii, S., Sasaki, S., . . . Muto, T. (1998). 5-Fluorouracil induces apoptosis in human colon cancer cell lines with modulation of Bcl-2 family proteins. Br J Cancer, 78(8), 986-992.
Royall, J. A., & Ischiropoulos, H. (1993). Evaluation of 2'',7''-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys, 302(2), 348-355. doi:10.1006/abbi.1993.1222
Sasaki, T., Arai, Y., Ikekawa, T., Chihara, G., & Fukuoka, F. (1971). Antitumor polysaccharides from some polyporaceae, Ganoderma applanatum (Pers.) Pat and Phellinus linteus (Berk. et Curt) Aoshima. Chem Pharm Bull (Tokyo), 19(4), 821-826.
Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., . . . Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Anal Biochem, 150(1), 76-85.
Tan, S., Sagara, Y., Liu, Y., Maher, P., & Schubert, D. (1998). The regulation of reactive oxygen species production during programmed cell death. J Cell Biol, 141(6), 1423-1432.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1), 44-84. doi:10.1016/j.biocel.2006.07.001
Wu, M. Y., Hsu, M. F., Huang, C. S., Fu, H. Y., Huang, C. T., & Yang, C. S. (2007). A 2.0 Å Structure of the Fungal Immunomodulatory Protein GMI from Ganoderma microsporum. .
Zhang, M. C., Liu, H. P., Demchik, L. L., Zhai, Y. F., & Yang, D. J. (2004). LIGHT sensitizes IFN-gamma-mediated apoptosis of HT-29 human carcinoma cells through both death receptor and mitochondria pathways. Cell Res, 14(2), 117-124. doi:10.1038/sj.cr.7290210


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊