|
[ 1 ] Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal of Financial Economics, 51(2), 245-271. [ 2 ] Asadi, S., Hadavandi, E., Mehmanpazir, F., & Nakhostin, M. M. (2012). Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction. Knowledge-Based Systems, 35, 245-258. [ 3 ] Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5), 1731-1764. [ 4 ] Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2005). A second-order perceptron algorithm. SIAM Journal on Computing, 34(3), 640-668. [ 5 ] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. [ 6 ] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online passive-aggressive algorithms. The Journal of Machine Learning Research, 7, 551-585. [ 7 ] Crammer, K., Kulesza, A., & Dredze, M. (2009). Adaptive regularization of weight vectors. In Advances in neural information processing systems (pp. 414-422). [ 8 ] Edwards, R. D., Magee, J., & Bassetti, W. H. C. (2007). Technical Analysis of Stock Trends. CRC Press. [ 9 ] Fama, E. F. (1965). The behavior of stock-market prices. Journal of Business, 34-105. [ 10 ] Gentile, C. (2002). A new approximate maximal margin classification algorithm. The Journal of Machine Learning Research, 2, 213-242. [ 11 ] Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513-2522. [ 12 ] Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Systems with Applications, 38(5), 5311-5319. [ 13 ] Kendall, M. G., & Hill, A. B. (1953). The analysis of economic time-series-part i: Prices. Journal of the Royal Statistical Society. Series A (General), 116(1), 11-34. [ 14 ] Kreesuradej, W., Wunsch, D., & Lane, M. (1994, June). Time-delay neural network for small time series data sets. In Proc. World Congr. Neural Networks. [ 15 ] Li, Y., & Long, P. M. (2002). The relaxed online maximum margin algorithm. Machine Learning, 46(1-3), 361-387. [ 16 ] Ou, P., & Wang, H. (2009). Prediction of stock market index movement by ten data mining techniques. Modern Applied Science, 3(12), 28-42. [ 17 ] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-407. [ 18 ] Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems (TOIS), 27(2), 1-19. [ 19 ] Yang, L., Jin, R., & Ye, J. (2009, June). Online learning by ellipsoid method. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 1153-1160). ACM. [ 20 ] Zhang, Y., & Wu, L. (2009). Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network. Expert Systems with Applications, 36(5), 8849-8854. [ 21 ] Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In ICML, 928–936,
|