跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張書聞
研究生(外文):Shu-Wen Chang
論文名稱:脂肪細胞分化過程中CRMP2透過細胞骨架對於GLUT4轉位和脂質代謝之影響
論文名稱(外文):Effects of Collapsing Response Mediator Protein 2 on Glucose Transporter Type 4 Translocation and Lipid Metabolism in Adipocyte Differentiation via Cytoskeleton Dynamics.
指導教授:張懿欣張懿欣引用關係
指導教授(外文):Yih-Hsin Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:112
中文關鍵詞:脂肪細胞CRMP2第四型葡萄糖轉運蛋白細胞骨架
外文關鍵詞:adipocyteCollapsin Response Mediator Protein 2Glucose Transporter Type 4 TranslocationCytoskeleton
相關次數:
  • 被引用被引用:1
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第二型糖尿病主要是因胰島素阻抗而造成高血糖和代謝異常等症狀,當糖尿病患者長期處於高血糖的狀態時,會產生過多的氧化壓力並對組織器官造成傷害,隨即發展成神經退化性疾病等糖尿病併發症。神經退化性疾病可能是細胞骨架和神經傳導物質異常導致,並且細胞骨架恆定也牽涉到脂肪細胞的胰島素作用、第四型葡萄糖轉運蛋白轉位(glucose transport type 4; GLUT4)和脂肪油滴的運送等代謝功能。Collapsin response mediator protein 2 (CRMP2)是一種調控細胞骨架的動態平衡與運輸囊泡的蛋白質。本實驗室先前研究結果指出,CRMP2在大腸癌合併糖尿病的患者表現較低,在脂肪細胞分化過程中也會下降,並影響油滴累積。此外,已知神經細胞中CRMP2的活性受到glycogen synthase kinase-3β (GSK-3β) 之調節,進而影響微管等細胞骨架恆定以協助神經細胞發育;而GSK-3β也是胰島素訊息傳遞路徑中關鍵分子,對於GLUT4轉位扮演重要角色。承上,我們假設CRMP2可能在脂肪細胞中參與GLUT4轉位等能量代謝的調控機制。因此本論文主要探討CRMP2對於脂肪細胞能量代謝、細胞分化和細胞骨架之影響,並且研究葡萄糖濃度對於CRMP2與脂肪細胞代謝等功能的影響。本研究發現CRMP2在脂肪細胞分化過程中持續保持活化狀態。過量表現CRMP2會降低CCAAT/enhancer binding protein α (C/EBP-α)、peroxisome proliferator-activated receptor gamma (PPAR-γ)和fatty acid binding protein 4 (FABP4)等脂肪細胞特有基因之表現量;同時也會降低acetyl CoA carboxylase (ACC)和fatty acid synthase (FAS)等脂肪酸生成酵素蛋白表現量,並且增加肌動蛋白絲的聚合作用,進而讓油滴堆積減少抑制脂肪細胞分化。抑制CRMP2表現則會產生相反結果,所以CRMP2確實參與脂肪生成和細胞分化等功能。除此之外,正常葡萄糖濃度(100 mg/dL)會使CRMP2、GLUT4、PPAR-γ和FABP4等脂肪基因表現量上升,並使基礎葡萄糖攝取能力增加約60%,但卻會減少脂肪油滴堆積量,因此葡萄糖濃度會調控CRMP2表現量並影響脂肪細胞葡萄糖攝取和油滴堆積等能力。然而正常濃度葡萄糖並不會影響CRMP2 mRNA表現和蛋白質半衰期。綜合本研究結果,葡萄糖濃度影響CRMP2表現量,因而調控葡萄糖攝取和油滴堆積功能,並增加細胞骨架的聚合,降低脂肪細胞分化和脂質合成。綜合上述,本研究推測高血糖可能影響CRMP2使脂肪組織代謝功能異常並參與糖尿病併發神經退化性疾病的致病機制。
Diabetes mellitus is a metabolic abnormality defined by hyperglycemia resulting from defects in insulin action and/or insulin secretion. Diabetic patients with long-term hyperglycemia are susceptible to develop multiple complications and neurodegenerative diseases due to hyperglycemia-resulted oxidative stress and damage. Cytoskeleton is abnormally assembled and neurotransmission is impaired in neurodegenerative diseases. Moreover, alterations in cytoskeleton dynamics have been implicated in insulin action, glucose transporter type 4 (GLUT4) translocation and trafficking of lipid droplets in adipocytes. Collapsin response mediator protein 2 (CRMP2) regulates neurite outgrowth through mediating microtubules dynamics, which is regulated by glycogen synthase kinase-3β (GSK-3β), the important mediator in the signaling of insulin and GLUT4 translocation. Accordingly, we hypothesized that CRMP2 may be involved in energy homeostasis and thus adipocyte differentiation (adipogenesis). The aim of this study is to investigate expression profile and effects of CRMP2 on glucose and lipid metabolism in adipogenic process of 3T3-L1 pre-adipocytes under high (hyperglycemia) or low (normoglycemia) glucose environment. Our results showed that CRMP2 overexpression in mature adipocytes led to reduced lipids accumulation and decreased expression of fatty acid synthesis enzyme (acetyl CoA carboxylase, ACC and fatty acid synthase, FAS) and adipogenesis marker peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein α (C/EBP-α) and fatty acid binding protein 4 (FABP4), while actin filament polymerization is increased. In contrast, knockdown of CRMP2 expression attenuated the above effects. Besides, CRMP2 expression and basal glucose uptake activity were significantly increased in cells under normoglycemic (100 mg/dL) condition. Although lipids contents were reduced in cells exposed to low glucose, expression of PPAR-γ, FABP4 and GLUT4 were elevated. Nevertheless, glucose levels did not affect CRMP2 mRNA levels and proteasomal degradation in adipogenic process. The above results suggest that under physiological glucose environment, the increased CRMP2 expression may result in upregulation of FABP4, PPAR-γ and GLUT4 that facilitates adipocyte differentiation as well as glucose uptake. In addition, the CRMP2-mediated decrease of fatty acid synthesis enzymes and adipogenesis markers and increase of cytoskeleton polymerization result in the reduced lipid accumulation. The above results suggest that CRMP2 may participate in diabetic pathogenesis and diabetic neuropathy through mediating lipid and glucose metabolism in response to external nutrient condition.
目錄
中文摘要 i
Abstract iii
目錄 v
壹、縮寫表 1
貳、緒論 3
一、糖尿病 3
1. 糖尿病流行病學 3
2. 糖尿病的定義與臨床症狀 3
3. 糖尿病診斷 4
4. 糖尿病分型 5
5. 糖尿病和阿茲海默症(Alzheimer's disease; AD)之關連性 6
二、脂肪組織(adipose tissue) 7
1. 脂肪組織介紹 7
2. 脂肪組織和代謝症候群(metabolic syndrome) 8
3. 脂肪細胞分化(adipocyte differentiation) 9
三、Collapsin response mediator protein 2 (CRMP2) 12
1. CRMP2蛋白結構 12
2. CRMP2生理功能 13
3. CRMP2活性之調控 14
4. CRMP2與疾病相關性 15
四、脂肪油滴 16
1. 油滴生合成 16
2. 中性脂質生成 17
3. 脂肪油滴的融合和運輸 18
五、第四型葡萄糖轉運蛋白(GLUT4) 19
1. GLUT4蛋白結構 19
2. 胰島素對GLUT4轉位之調控 19
3. 細胞骨架對於GLUT4運輸之關聯 20
4. 肥胖和第二型糖尿病對GLUT4之異常調控 21
參、研究動機與目的 22
肆、實驗方法 24
一、3T3-L1脂肪細胞培養(cell culture of 3T3-L1 cell) 24
1. 細胞繼代培養 24
2. 解凍細胞 25
3. 細胞誘導分化(cell differentiation) 25
4. 高濃度葡萄糖或低濃度葡萄糖細胞培養(cell culture under high or low glucose environment ) 25
5. 放線菌酮(cycloheximide)處理 26
二、西方墨點法(Western Blotting) 26
1. 細胞萃取液製備 26
2. 蛋白質定量 26
3. 電泳樣品製備 27
4. 電泳膠片的轉漬與Blocking 27
5. 一級與二級抗體反應與冷光訊號偵測 28
6. 呈色與顯影(color development) 28
四、RT-PCR (reverse transcription-polymerase chain reaction) 29
1. RT (reverse transcription) 29
2. 聚合酶連鎖反應(polymerase chain reaction) 30
3. DNA電泳 30
五、CRMP2質體抽取(CRMP2 plasmid extraction) 30
六、脂肪細胞油滴染色(Oil-Red O staining) 31
七、DNA轉染(DNA transfection) 32
八、免疫螢光染色(immunofluorescence staining) 32
九、siRNA轉染(siRNA transfection) 33
十、測量葡萄糖攝取活性(Measurement of glucose uptake) 34
十一、統計分析 34
伍、結果 35
一、脂肪細胞分化過程中CRMP2表現和活性之情形 35
二、CRMP2對脂肪細胞分化之影響 37
三、CRMP2對脂肪細胞油滴累積之影響 38
四、CRMP2對脂肪細胞脂質生成酵素的影響 38
五、CRMP2對脂肪細胞之細胞骨架之影響 39
六、葡萄糖濃度對CRMP2和脂肪細胞分化影響之情況 41
1. 低濃度葡萄糖(100 mg/dL)培養對脂肪細胞油滴累積之影響 41
2. 低濃度葡萄糖(100 mg/dL)對脂肪細胞分化和CRMP2表現量之影響 42
3. 不同葡萄糖濃度對脂肪細胞中CRMP2降解程度之影響 43
4. 低濃度葡萄糖(100 mg/dL)對脂肪細胞葡萄糖攝取能力之影響 44
陸、討論 46
柒、參考文獻 54
捌、圖表與圖表說明 70
Figure 1. Expression of adipocyte differentiation marker and CRMP2 during adipogenesis in 3T3-L1 cell. 72
Figure 2. Expression of CRMP2 mRNA during adipogenesis in 3T3-L1 cells. 73
Figure 3. Expression of p-CRMP2 Thr-514 and p-GSK-3β Ser-9 phosphorylation during adipogenesis in 3T3-L1 cells. 74
Figure 4. Effects of CRMP2 on adipogenesis marker during adipogensis in 3T3-L1 cells. 78
Figure 5. Effects of CRMP2 on lipid accumulation in mature 3T3-L1 cells. 81
Figure 6. Effects of CRMP2 on lipid synthesis enzymes during adipogensis in 3T3-L1 cells. 84
Figure 7. Effects of CRMP2 on actin filament and lipid droplets (LDs) in mature 3T3-L1 cells. 89
Figure 8. Effect of high (450 mg/dL) or low (100 mg/dL) glucose concentration culture environments on lipid accumulation in mature 3T3-L1 cells. 91
Figure 9. Effect of high or low glucose culture media on expression of CRMP2 and adipocyte differentiation marker during adipogensis in 3T3-L1 cells. 94
Figure 10. Effect of high or low glucose culture media on expression of CRMP2 mRNA during adipogenesis in 3T3-L1 cells. 95
Figure 11. Effect of high or low glucose culture media on distribution of CRMP2 and GLUT4 during adipogensis in 3T3-L1 cells. 97
Figure 12. Effect of various glucose concentrations on degradation of CRMP2 proteins in day 4 3T3-L1 cells. 98
Figure 13. Effect of high or low glucose culture media on glucose uptake ability in mature 3T3-L1 cells. 99
玖、附錄 100
附圖ㄧ、Induction of adipogenesis by a cascade of transcription factors. 100
附圖二、CRMPs family protein sequence 102
附圖三、CRMP2 protein structure 103
附圖四、CRMP2 signaling pathways and functions 104
附圖五、Lipid droplets trafficking 106
附圖六、Tow kinds of Insulin signalling regulates GLUT4 exocytosis 107
附圖七、Map of pTARGET-CRMP2-myc tag 109
附表一、引子序列 110
附表二、siRNA序列 110
附表三、藥品 110

Abdul-Rasoul, M., Al-Mahdi, M., Al-Qattan, H., Al-Tarkait, N., Alkhouly, M., Al-Safi, R., Al-Shawaf, F., and Mahmoud, H. (2010). Ketoacidosis at presentation of type 1 diabetes in children in Kuwait: frequency and clinical characteristics. Pediatr Diabetes 11, 351-356.
Adamiak, P., and Lacka, K. (2016). [Adipose tissue, adipokines and aging]. Pol Merkur Lekarski 40, 122-128.
Akter, K., Lanza, E.A., Martin, S.A., Myronyuk, N., Rua, M., and Raffa, R.B. (2011). Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol 71, 365-376.
Andersson, L., Bostrom, P., Ericson, J., Rutberg, M., Magnusson, B., Marchesan, D., Ruiz, M., Asp, L., Huang, P., Frohman, M.A., et al. (2006). PLD1 and ERK2 regulate cytosolic lipid droplet formation. J Cell Sci 119, 2246-2257.
Arimura, N., Menager, C., Fukata, Y., and Kaibuchi, K. (2004). Role of CRMP-2 in neuronal polarity. J Neurobiol 58, 34-47.
Ashrafi, K. (2007). Obesity and the regulation of fat metabolism. WormBook, 1-20.
Atkinson, B.J., Griesel, B.A., King, C.D., Josey, M.A., and Olson, A.L. (2013). Moderate GLUT4 overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice. Diabetes 62, 2249-2258.
Balastik, M., Zhou, X.Z., Alberich-Jorda, M., Weissova, R., Ziak, J., Pazyra-Murphy, M.F., Cosker, K.E., Machonova, O., Kozmikova, I., Chen, C.H., et al. (2015). Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons. Cell Rep 13, 812-828.
Barbagallo, M., and Dominguez, L.J. (2014). Type 2 diabetes mellitus and Alzheimer's disease. World J Diabetes 5, 889-893.
Biessels, G.J., Strachan, M.W., Visseren, F.L., Kappelle, L.J., and Whitmer, R.A. (2014). Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol 2, 246-255.
Bogan, J.S., and Kandror, K.V. (2010). Biogenesis and regulation of insulin-responsive vesicles containing GLUT4. Curr Opin Cell Biol 22, 506-512.
Brasaemle, D.L. (2007). Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48, 2547-2559.
Browning, J.D., and Horton, J.D. (2004). Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114, 147-152.
Bryant, N.J., Govers, R., and James, D.E. (2002). Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3, 267-277.
Buhman, K.K., Chen, H.C., and Farese, R.V., Jr. (2001). The enzymes of neutral lipid synthesis. J Biol Chem 276, 40369-40372.
Cao, Y. (2013). Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18, 478-489.
Carvalho, E., Jansson, P.A., Nagaev, I., Wenthzel, A.M., and Smith, U. (2001). Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 15, 1101-1103.
Chang, G.Y., Park, A.S., and Susztak, K. (2011). Tracing the footsteps of glomerular insulin signaling in diabetic kidney disease. Kidney Int 79, 802-804.
Charrier, E., Reibel, S., Rogemond, V., Aguera, M., Thomasset, N., and Honnorat, J. (2003). Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 28, 51-64.
Chen, J., Guo, Y., Cheng, W., Chen, R., Liu, T., Chen, Z., and Tan, S. (2013). High glucose induces apoptosis and suppresses proliferation of adult rat neural stem cells following in vitro ischemia. BMC Neurosci 14, 24.
Chen, X.W., Leto, D., Xiong, T., Yu, G., Cheng, A., Decker, S., and Saltiel, A.R. (2011). A Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation in insulin action. Mol Biol Cell 22, 141-152.
Cherbuin, N., Sachdev, P., and Anstey, K.J. (2012). Higher normal fasting plasma glucose is associated with hippocampal atrophy: The PATH Study. Neurology 79, 1019-1026.
Choi, K., Ghaddar, B., Moya, C., Shi, H., Sridharan, G.V., Lee, K., and Jayaraman, A. (2014). Analysis of transcription factor network underlying 3T3-L1 adipocyte differentiation. PLoS One 9, e100177.
Chun, J., Weiner, J.A., Fukushima, N., Contos, J.J., Zhang, G., Kimura, Y., Dubin, A., Ishii, I., Hecht, J.H., Akita, C., et al. (2000). Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Ann N Y Acad Sci 905, 110-117.
Chung, M.A., Lee, J.E., Lee, J.Y., Ko, M.J., Lee, S.T., and Kim, H.J. (2005). Alteration of collapsin response mediator protein-2 expression in focal ischemic rat brain. Neuroreport 16, 1647-1653.
Cornelius, P., MacDougald, O.A., and Lane, M.D. (1994). Regulation of adipocyte development. Annu Rev Nutr 14, 99-129.
de la Monte, S.M. (2014). Type 3 diabetes is sporadic Alzheimers disease: mini-review. Eur Neuropsychopharmacol 24, 1954-1960.
Deo, R.C., Schmidt, E.F., Elhabazi, A., Togashi, H., Burley, S.K., and Strittmatter, S.M. (2004). Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO J 23, 9-22.
Ducharme, N.A., and Bickel, P.E. (2008). Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942-949.
Farmer, S.R. (2006). Transcriptional control of adipocyte formation. Cell Metab 4, 263-273.
Fetita, L.S., Sobngwi, E., Serradas, P., Calvo, F., and Gautier, J.F. (2006). Consequences of fetal exposure to maternal diabetes in offspring. J Clin Endocrinol Metab 91, 3718-3724.
Fischer, Y., Bottcher, U., Eblenkamp, M., Thomas, J., Jungling, E., Rosen, P., and Kammermeier, H. (1997). Glucose transport and glucose transporter GLUT4 are regulated by product(s) of intermediary metabolism in cardiomyocytes. Biochem J 321 ( Pt 3), 629-638.
Floyd, Z.E., Segura, B.M., He, F., and Stephens, J.M. (2007). Degradation of STAT5 proteins in 3T3-L1 adipocytes is induced by TNF-{alpha} and cycloheximide in a manner independent of STAT5A activation. Am J Physiol Endocrinol Metab 292, E461-468.
Fukata, Y., Itoh, T.J., Kimura, T., Menager, C., Nishimura, T., Shiromizu, T., Watanabe, H., Inagaki, N., Iwamatsu, A., Hotani, H., et al. (2002). CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4, 583-591.
Gao, Y., Koppen, A., Rakhshandehroo, M., Tasdelen, I., van de Graaf, S.F., van Loosdregt, J., van Beekum, O., Hamers, N., van Leenen, D., Berkers, C.R., et al. (2013). Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nat Commun 4, 2656.
Gellert, M., Venz, S., Mitlohner, J., Cott, C., Hanschmann, E.M., and Lillig, C.H. (2013). Identification of a dithiol-disulfide switch in collapsin response mediator protein 2 (CRMP2) that is toggled in a model of neuronal differentiation. J Biol Chem 288, 35117-35125.
Goshima, Y., Nakamura, F., Strittmatter, P., and Strittmatter, S.M. (1995). Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509-514.
Graham, T.E., Yang, Q., Bluher, M., Hammarstedt, A., Ciaraldi, T.P., Henry, R.R., Wason, C.J., Oberbach, A., Jansson, P.A., Smith, U., et al. (2006). Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354, 2552-2563.
Greenberg, A.S., and Obin, M.S. (2006). Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83, 461S-465S.
Gregoire, F.M., Smas, C.M., and Sul, H.S. (1998). Understanding adipocyte differentiation. Physiol Rev 78, 783-809.
Grygiel-Gorniak, B. (2014). Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 13, 17.
Guilherme, A., Virbasius, J.V., Puri, V., and Czech, M.P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9, 367-377.
Guo, Y., Walther, T.C., Rao, M., Stuurman, N., Goshima, G., Terayama, K., Wong, J.S., Vale, R.D., Walter, P., and Farese, R.V. (2008). Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657-661.
Hall, C., Brown, M., Jacobs, T., Ferrari, G., Cann, N., Teo, M., Monfries, C., and Lim, L. (2001). Collapsin response mediator protein switches RhoA and Rac1 morphology in N1E-115 neuroblastoma cells and is regulated by Rho kinase. J Biol Chem 276, 43482-43486.
Hamajima, N., Matsuda, K., Sakata, S., Tamaki, N., Sasaki, M., and Nonaka, M. (1996). A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene 180, 157-163.
Inagaki, N., Chihara, K., Arimura, N., Menager, C., Kawano, Y., Matsuo, N., Nishimura, T., Amano, M., and Kaibuchi, K. (2001). CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4, 781-782.
Jae Young Lee, K.T.a.S.P. (2014). Axonal degeneration in multiple sclerosis: can we predict and prevent permanent disability? Acta Neuropathologica Communications 2, 1-16.
Jeong, E.M., Chung, J., Liu, H., Go, Y., Gladstein, S., Farzaneh-Far, A., Lewandowski, E.D., and Dudley, S.C., Jr. (2016). Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction. J Am Heart Assoc 5.
Jones, J.R., Barrick, C., Kim, K.A., Lindner, J., Blondeau, B., Fujimoto, Y., Shiota, M., Kesterson, R.A., Kahn, B.B., and Magnuson, M.A. (2005). Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A 102, 6207-6212.
Kajimura, S., Seale, P., Tomaru, T., Erdjument-Bromage, H., Cooper, M.P., Ruas, J.L., Chin, S., Tempst, P., Lazar, M.A., and Spiegelman, B.M. (2008). Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 22, 1397-1409.
Kang, Y.E., Kim, J.M., Joung, K.H., Lee, J.H., You, B.R., Choi, M.J., Ryu, M.J., Ko, Y.B., Lee, M.A., Lee, J., et al. (2016). The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction. PLoS One 11, e0154003.
Kasra Taghian, J.Y.L., and Steven Petratos (2012). Phosphorylation and Cleavage of the Family of Collapsin Response Mediator Proteins May Play a Central Role in Neurodegeneration after CNS Trauma. J Neurotrauma 29, 1728-1735.
Kee, A.J., Yang, L., Lucas, C.A., Greenberg, M.J., Martel, N., Leong, G.M., Hughes, W.E., Cooney, G.J., James, D.E., Ostap, E.M., et al. (2015). An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake. Traffic 16, 691-711.
Kim, J.A., Wei, Y., and Sowers, J.R. (2008). Role of mitochondrial dysfunction in insulin resistance. Circ Res 102, 401-414.
Kitabchi, A.E., Umpierrez, G.E., Miles, J.M., and Fisher, J.N. (2009). Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32, 1335-1343.
Klip, A., Sun, Y., Chiu, T.T., and Foley, K.P. (2014). Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol 306, C879-886.
Kroner, Z. (2009). The relationship between Alzheimer's disease and diabetes: Type 3 diabetes? Altern Med Rev 14, 373-379.
Kuerschner, L., Moessinger, C., and Thiele, C. (2008). Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9, 338-352.
Lefterova, M.I., Zhang, Y., Steger, D.J., Schupp, M., Schug, J., Cristancho, A., Feng, D., Zhuo, D., Stoeckert, C.J., Jr., Liu, X.S., et al. (2008). PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22, 2941-2952.
Leto, D., and Saltiel, A.R. (2012). Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol 13, 383-396.
Lim, C.Y., Bi, X., Wu, D., Kim, J.B., Gunning, P.W., Hong, W., and Han, W. (2015). Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nat Commun 6, 5951.
Liu, J., Kimura, A., Baumann, C.A., and Saltiel, A.R. (2002). APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol Cell Biol 22, 3599-3609.
Lluis Fajas, R.L.L., Yolande Huss-Garcia, Claude Sardet, Jacqueline A. Lees, and Johan Auwerx (2002). E2Fs Regulate Adipocyte Differentiation. Developmental Cell 3.
Lluis Fajas, V.E., Raphael Reiter, Jacob Hansen, Karsten Kristiansen, Marie-Bernard Debril, Ste ́ phanie Miard,, and Auwerx, a.J. (2002). The Retinoblastoma-Histone Deacetylase 3 Complex Inhibits PPARr and Adipocyte Differentiation. Developmental Cell 3, 903–910.
Lykissas, M.G., Batistatou, A.K., Charalabopoulos, K.A., and Beris, A.E. (2007). The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res 4, 143-151.
Macauley, S.L., Stanley, M., Caesar, E.E., Yamada, S.A., Raichle, M.E., Perez, R., Mahan, T.E., Sutphen, C.L., and Holtzman, D.M. (2015). Hyperglycemia modulates extracellular amyloid-beta concentrations and neuronal activity in vivo. J Clin Invest 125, 2463-2467.
Maenhaut, N., and Van de Voorde, J. (2011). Regulation of vascular tone by adipocytes. BMC Med 9, 25.
Marcinkiewicz, A., Gauthier, D., Garcia, A., and Brasaemle, D.L. (2006). The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Biol Chem 281, 11901-11909.
Martins-de-Souza, D., Cassoli, J.S., Nascimento, J.M., Hensley, K., Guest, P.C., Pinzon-Velasco, A.M., and Turck, C.W. (2015). The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue. Proteomics Clin Appl 9, 817-831.
Mazouzi, A., Stukalov, A., Muller, A.C., Chen, D., Wiedner, M., Prochazkova, J., Chiang, S.C., Schuster, M., Breitwieser, F.P., Pichlmair, A., et al. (2016). A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN. Cell Rep.
Mittal, K., Mani, R.J., and Katare, D.P. (2016). Type 3 Diabetes: Cross Talk between Differentially Regulated Proteins of Type 2 Diabetes Mellitus and Alzheimer's Disease. Sci Rep 6, 25589.
Moutal, A., Francois-Moutal, L., Perez-Miller, S., Cottier, K., Chew, L.A., Yeon, S.K., Dai, J., Park, K.D., Khanna, M., and Khanna, R. (2016). (S)-Lacosamide Binding to Collapsin Response Mediator Protein 2 (CRMP2) Regulates CaV2.2 Activity by Subverting Its Phosphorylation by Cdk5. Mol Neurobiol 53, 1959-1976.
Murphy, S., Martin, S., and Parton, R.G. (2009). Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791, 441-447.
Nishimura, S., Manabe, I., and Nagai, R. (2009). Adipose tissue inflammation in obesity and metabolic syndrome. Discov Med 8, 55-60.
Nishimura, T., Fukata, Y., Kato, K., Yamaguchi, T., Matsuura, Y., Kamiguchi, H., and Kaibuchi, K. (2003). CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nat Cell Biol 5, 819-826.
Nobusue, H., Onishi, N., Shimizu, T., Sugihara, E., Oki, Y., Sumikawa, Y., Chiyoda, T., Akashi, K., Saya, H., and Kano, K. (2014). Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation. Nat Commun 5, 3368.
Norseen, J., Hosooka, T., Hammarstedt, A., Yore, M.M., Kant, S., Aryal, P., Kiernan, U.A., Phillips, D.A., Maruyama, H., Kraus, B.J., et al. (2012). Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol 32, 2010-2019.
Oliemuller, E., Pelaez, R., Garasa, S., Pajares, M.J., Agorreta, J., Pio, R., Montuenga, L.M., Teijeira, A., Llanos, S., and Rouzaut, A. (2013). Phosphorylated tubulin adaptor protein CRMP-2 as prognostic marker and candidate therapeutic target for NSCLC. Int J Cancer 132, 1986-1995.
Olofsson, S.O., Bostrom, P., Andersson, L., Rutberg, M., Levin, M., Perman, J., and Boren, J. (2008). Triglyceride containing lipid droplets and lipid droplet-associated proteins. Curr Opin Lipidol 19, 441-447.
Paneni, F., Costantino, S., and Cosentino, F. (2014). Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 16, 419.
Patel, A.Y., Shah, P., and Flaherty, J.H. (2012). Number of medications is associated with outcomes in the elderly patient with metabolic syndrome. J Geriatr Cardiol 9, 213-219.
Procaccini, C., De Rosa, V., Galgani, M., Carbone, F., La Rocca, C., Formisano, L., and Matarese, G. (2013). Role of adipokines signaling in the modulation of T cells function. Front Immunol 4, 332.
Quinn, C.C., Chen, E., Kinjo, T.G., Kelly, G., Bell, A.W., Elliott, R.C., McPherson, P.S., and Hockfield, S. (2003). TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci 23, 2815-2823.
Rahajeng, J., Giridharan, S.S., Naslavsky, N., and Caplan, S. (2010). Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J Biol Chem 285, 31918-31922.
Ripsin, C.M., Kang, H., and Urban, R.J. (2009). Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician 79, 29-36.
Rogemond, V., Auger, C., Giraudon, P., Becchi, M., Auvergnon, N., Belin, M.F., Honnorat, J., and Moradi-Ameli, M. (2008). Processing and nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition. J Biol Chem 283, 14751-14761.
Sahin-Efe, A., Katsikeris, F., and Mantzoros, C.S. (2012). Advances in adipokines. Metabolism 61, 1659-1665.
Schmidt, E.F., and Strittmatter, S.M. (2007). The CRMP family of proteins and their role in Sema3A signaling. Adv Exp Med Biol 600, 1-11.
Schneider-Poetsch, T., Ju, J., Eyler, D.E., Dang, Y., Bhat, S., Merrick, W.C., Green, R., Shen, B., and Liu, J.O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6, 209-217.
Sharma, R., Buras, E., Terashima, T., Serrano, F., Massaad, C.A., Hu, L., Bitner, B., Inoue, T., Chan, L., and Pautler, R.G. (2010). Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice. PLoS One 5, e13463.
Shimada, K., Ishikawa, T., Nakamura, F., Shimizu, D., Chishima, T., Ichikawa, Y., Sasaki, T., Endo, I., Nagashima, Y., and Goshima, Y. (2014). Collapsin response mediator protein 2 is involved in regulating breast cancer progression. Breast Cancer 21, 715-723.
Shubeita, G.T., Tran, S.L., Xu, J., Vershinin, M., Cermelli, S., Cotton, S.L., Welte, M.A., and Gross, S.P. (2008). Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135, 1098-1107.
Smith, U. (2002). Impaired ('diabetic') insulin signaling and action occur in fat cells long before glucose intolerance--is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord 26, 897-904.
Song do, K., Hong, Y.S., Lee, H., Oh, J.Y., Sung, Y.A., and Kim, Y. (2015). Increased Epicardial Adipose Tissue Thickness in Type 2 Diabetes Mellitus and Obesity. Diabetes Metab J 39, 405-413.
Soutar, M.P., Thornhill, P., Cole, A.R., and Sutherland, C. (2009). Increased CRMP2 phosphorylation is observed in Alzheimer's disease; does this tell us anything about disease development? Curr Alzheimer Res 6, 269-278.
Spana, E.P., and Doe, C.Q. (1996). Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17, 21-26.
St Johnston, D. (2008). Counting motors by force. Cell 135, 1000-1001.
Stenmark, P., Ogg, D., Flodin, S., Flores, A., Kotenyova, T., Nyman, T., Nordlund, P., and Kursula, P. (2007). The structure of human collapsin response mediator protein 2, a regulator of axonal growth. J Neurochem 101, 906-917.
Stockli, J., Fazakerley, D.J., and James, D.E. (2011). GLUT4 exocytosis. J Cell Sci 124, 4147-4159.
Strufaldi, M.W., Puccini, R.F., Silverio, O.M., and do Pinho Franco, M.C. (2013). Association of adipokines with cardiovascular risk factors in low birth weight children: a case-control study. Eur J Pediatr 172, 71-76.
Sundkvist, G., Dahlin, L.B., Nilsson, H., Eriksson, K.F., Lindgarde, F., Rosen, I., Lattimer, S.A., Sima, A.A., Sullivan, K., and Greene, D.A. (2000). Sorbitol and myo-inositol levels and morphology of sural nerve in relation to peripheral nerve function and clinical neuropathy in men with diabetic, impaired, and normal glucose tolerance. Diabet Med 17, 259-268.
Taghian, K., Lee, J.Y., and Petratos, S. (2012). Phosphorylation and cleavage of the family of collapsin response mediator proteins may play a central role in neurodegeneration after CNS trauma. J Neurotrauma 29, 1728-1735.
Tan, F., Thiele, C.J., and Li, Z. (2014). Collapsin response mediator proteins: Potential diagnostic and prognostic biomarkers in cancers (Review). Oncol Lett 7, 1333-1340.
Tan, M., Cha, C., Ye, Y., Zhang, J., Li, S., Wu, F., Gong, S., and Guo, G. (2015). CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation. Neural Plast 2015, 947423.
Tan, M., Ma, S., Huang, Q., Hu, K., Song, B., and Li, M. (2013). GSK-3alpha/beta-mediated phosphorylation of CRMP-2 regulates activity-dependent dendritic growth. J Neurochem 125, 685-697.
Tang, Q.Q., Gronborg, M., Huang, H., Kim, J.W., Otto, T.C., Pandey, A., and Lane, M.D. (2005). Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci U S A 102, 9766-9771.
Trayhurn, P. (2013). Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93, 1-21.
Trayhurn, P. (2014). Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu Rev Nutr 34, 207-236.
Uchida, Y., and Goshima, Y. (2005). [Molecular mechanism of axon guidance mediated by phosphorylation of CRMP2]. Seikagaku 77, 1424-1427.
Urbanova, M., and Haluzik, M. (2015). [The role of adipose tissue in pathogenesis of type 2 diabetes mellitus]. Cesk Fysiol 64, 73-78.
Vazquez-Vela, M.E., Torres, N., and Tovar, A.R. (2008). White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 39, 715-728.
Vossen, M., Todter, K., Altenburg, C., Beisiegel, U., and Scheja, L. (2011). Plasma triglycerides after oral glucose load specifically associate with metabolic risk markers in healthy type 2 diabetes offspring. Atherosclerosis 217, 214-219.
Wakatsuki, S., Saitoh, F., and Araki, T. (2011). ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol 13, 1415-1423.
Walther, T.C., and Farese, R.V., Jr. (2012). Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81, 687-714.
Wang, L.H., and Strittmatter, S.M. (1997). Brain CRMP forms heterotetramers similar to liver dihydropyrimidinase. J Neurochem 69, 2261-2269.
Wang, Y., Yin, H., Li, J., Zhang, Y., Han, B., Zeng, Z., Qiao, N., Cui, X., Lou, J., and Li, J. (2013). Amelioration of beta-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neurosci Lett 557 Pt B, 112-117.
Wang, Z.V., Schraw, T.D., Kim, J.Y., Khan, T., Rajala, M.W., Follenzi, A., and Scherer, P.E. (2007). Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol Cell Biol 27, 3716-3731.
Whiteman, E.L., Cho, H., and Birnbaum, M.J. (2002). Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13, 444-451.
Wood, I.S., and Trayhurn, P. (2003). Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89, 3-9.
Xiong, T., Tang, J., Zhao, J., Chen, H., Zhao, F., Li, J., Qu, Y., Ferriero, D., and Mu, D. (2012). Involvement of the Akt/GSK-3beta/CRMP-2 pathway in axonal injury after hypoxic-ischemic brain damage in neonatal rat. Neuroscience 216, 123-132.
Xu, W., Wong, T.P., Chery, N., Gaertner, T., Wang, Y.T., and Baudry, M. (2007). Calpain-mediated mGluR1alpha truncation: a key step in excitotoxicity. Neuron 53, 399-412.
Yamazaki, Y., Harada, S., and Tokuyama, S. (2015). Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia. Neurosci Lett 604, 134-139.
Yang, X., Zhang, X., Li, Y., Han, S., Howells, D.W., Li, S., and Li, J. (2016). Conventional protein kinase Cbeta-mediated phosphorylation inhibits collapsin response-mediated protein 2 proteolysis and alleviates ischemic injury in cultured cortical neurons and ischemic stroke-induced mice. J Neurochem 137, 446-459.
Yin, Y., Wang, Y., Chen, L., Han, S., Zhao, L., Luo, Y., and Li, J. (2013). Tat-collapsin response mediator protein 2 (CRMP2) increases the survival of neurons after NMDA excitotoxity by reducing the cleavage of CRMP2. Neurochem Res 38, 2095-2104.
Yoshimura, T., Arimura, N., Kawano, Y., Kawabata, S., Wang, S., and Kaibuchi, K. (2006). Ras regulates neuronal polarity via the PI3-kinase/Akt/GSK-3beta/CRMP-2 pathway. Biochem Biophys Res Commun 340, 62-68.
Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A., and Kaibuchi, K. (2005). GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137-149.
Yu, Q., Gao, F., and Ma, X.L. (2011). Insulin says NO to cardiovascular disease. Cardiovasc Res 89, 516-524.
Yuasa-Kawada, J., Suzuki, R., Kano, F., Ohkawara, T., Murata, M., and Noda, M. (2003). Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur J Neurosci 17, 2329-2343.
Yutaka Uchida, T.O., Yukio Sasaki, Hiromi Suzuki, Shigeki Yanai, Naoya Yamashita, Fumio Nakamura, Kohtaro Takei, Yasuo Ihara, Katsuhiko Mikoshiba, Papachan Kolattukudy, Jerome Honnorat andYoshio Goshima (2005). Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes to Cells 10, 165-179.
Zehmer, J.K., Huang, Y., Peng, G., Pu, J., Anderson, R.G., and Liu, P. (2009). A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9, 914-921.
Zhang, Z., Ottens, A.K., Sadasivan, S., Kobeissy, F.H., Fang, T., Hayes, R.L., and Wang, K.K. (2007). Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J Neurotrauma 24, 460-472.
Zoungas, S., Chalmers, J., Ninomiya, T., Li, Q., Cooper, M.E., Colagiuri, S., Fulcher, G., de Galan, B.E., Harrap, S., Hamet, P., et al. (2012). Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds. Diabetologia 55, 636-643.

楊蕙如(2012)。大腸直腸癌合併糖尿病患者CRMP2表現量之研究。中山醫學大學生化暨生物科技研究所碩士論文。
許瑋庭(2013)。脂肪細胞中Collapsin Response Mediator Protein 2蛋白對脂質和葡萄糖代謝之影響。國立陽明大學醫學生物技術暨檢驗學系研究所碩士論文。 

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top