|
1.Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 2.Sajnani, K., et al., Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie, 2017. 135: p. 164-172. 3.Kim, J.W. and C.V. Dang, Cancer''s molecular sweet tooth and the Warburg effect. Cancer Res, 2006. 66(18): p. 8927-30. 4.Huang, J., et al., Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals. Breast Cancer Res Treat, 2017. 161(2): p. 229-243. 5.Jones, R.G. and C.B. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev, 2009. 23(5): p. 537-48. 6.Sun, N., et al., Tripartite motif containing 25 promotes proliferation and invasion of colorectal cancer cells through TGF-beta signaling. Biosci Rep, 2017. 7.Sae-Lao, T., et al., Sulfated Galactans from Red Seaweed Gracilaria fisheri Target EGFR and Inhibit Cholangiocarcinoma Cell Proliferation. Am J Chin Med, 2017. 45(3): p. 615-633. 8.Kretzschmar, M., et al., A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev, 1999. 13(7): p. 804-16. 9.Massague, J. and R.R. Gomis, The logic of TGFbeta signaling. FEBS Lett, 2006. 580(12): p. 2811-20. 10.Sista, A.K., et al., Endovascular Interventions for Acute and Chronic Lower Extremity Deep Venous Disease: State of the Art. Radiology, 2015. 276(1): p. 31-53. 11.Naghavi, N., et al., Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling. Microvasc Res, 2016. 107: p. 51-64. 12.Siveen, K.S., et al., Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges. Curr Vasc Pharmacol, 2017. 13.Li, D., et al., Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects. Cancer Letters, 2016. 377(2): p. 164-173. 14.Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6. 15.Kim, Y., M.A. Stolarska, and H.G. Othmer, The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol, 2011. 106(2): p. 353-79. 16.Green, C.E., et al., Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One, 2009. 4(8): p. e6713. 17.Mitchison, T.J. and L.P. Cramer, Actin-based cell motility and cell locomotion. Cell, 1996. 84(3): p. 371-9. 18.Sheetz, M.P., et al., Cell migration as a five-step cycle. Biochem Soc Symp, 1999. 65: p. 233-43. 19.Soll, D.R., The use of computers in understanding how animal cells crawl. Int Rev Cytol, 1995. 163: p. 43-104. 20.Small, J.V., et al., How do microtubules guide migrating cells? Nat Rev Mol Cell Biol, 2002. 3(12): p. 957-64. 21.Pollard, T.D., Reflections on a quarter century of research on contractile systems. Trends Biochem Sci, 2000. 25(12): p. 607-11. 22.行政院衛生福利部國民健康署, 2015. 23.http://www.docteurclic.com/maladie/metastase.aspx. 24.Boffetta, P., et al., Smokeless tobacco and cancer. Lancet Oncol, 2008. 9(7): p. 667-75. 25.Altieri, A., et al., Wine, beer and spirits and risk of oral and pharyngeal cancer: a case-control study from Italy and Switzerland. Oral Oncol, 2004. 40(9): p. 904-9. 26.Wu, W., et al., Clinical Research of Oral Mucosal Transudate Human Immunodeficiency Virus (1/2) Antibody Detection Kit (Colloidal Gold). Vox Sanguinis, 2009. 97: p. 152-152. 27.Nohata, N., M.C. Abba, and J.S. Gutkind, Unraveling the oral cancer lncRNAome: Identification of novel lncRNAs associated with malignant progression and HPV infection. Oral Oncol, 2016. 59: p. 58-66. 28.Scully, C. and J. Bagan, Oral squamous cell carcinoma overview. Oral Oncology, 2009. 45(4-5): p. 301-308. 29.Lodi, G., et al., Interventions for treating oral leukoplakia. Cochrane Database Syst Rev, 2006(4): p. CD001829. 30.Bierie, B. and H.L. Moses, Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev, 2010. 21(1): p. 49-59. 31.Kalluri, R., EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest, 2009. 119(6): p. 1417-9. 32.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 33.Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54. 34.Zuo, J., et al., Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT. Med Oncol, 2016. 33(2): p. 15. 35.Palma Cde, S., et al., Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells. Mol Cell Proteomics, 2016. 15(3): p. 906-17. 36.Zhang, T., et al., Slug overexpression is associated with poor prognosis in thymoma patients. Oncol Lett, 2016. 11(1): p. 306-310. 37.Li, K., et al., CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. Tumour Biol, 2016. 37(1): p. 419-24. 38.Gou, Y., et al., RUNX3 regulates hepatocellular carcinoma cell metastasis via targeting miR-186/E-cadherin/EMT pathway. Oncotarget, 2017. 39.Maeda, M., K.R. Johnson, and M.J. Wheelock, Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci, 2005. 118(Pt 5): p. 873-87. 40.Lee, C.W., et al., TNF-alpha induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-kappaB/p300 binding in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2007. 292(3): p. L799-812. 41.Orlichenko, L.S. and D.C. Radisky, Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis, 2008. 25(6): p. 593-600. 42.Zhao, Y.L., R.T. Zhu, and Y.L. Sun, Epithelial-mesenchymal transition in liver fibrosis. Biomed Rep, 2016. 4(3): p. 269-274. 43.Ishida, A., et al., Cloning and chromosome mapping of the human Mel-18 gene which encodes a DNA-binding protein with a new ''RING-finger'' motif. Gene, 1993. 129(2): p. 249-55. 44.Wu, C.Y., J.J. Hung, and K.J. Wu, Linkage between Twist1 and Bmi1: molecular mechanism of cancer metastasis/stemness and clinical implications. Clin Exp Pharmacol Physiol, 2012. 39(8): p. 668-73. 45.Wu, W.R., et al., Methylation-associated silencing of miR-200b facilitates human hepatocellular carcinoma progression by directly targeting BMI1. Oncotarget, 2016. 7(14): p. 18684-93. 46.Ren, H., et al., TWIST1 and BMI1 in Cancer Metastasis and Chemoresistance. J Cancer, 2016. 7(9): p. 1074-80. 47.Guo, S., et al., miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett, 2014. 344(1): p. 40-46. 48.Wei, X.L., et al., ERalpha inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget, 2015. 6(25): p. 21704-17. 49.Paranjape, A.N., et al., Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer, 2014. 14: p. 785. 50.Yuan, C., et al., Polycystic ovary syndrome patients with high BMI tend to have functional disorders of androgen excess: a prospective study. J Biomed Res, 2016. 30(3): p. 197-202. 51.Yuan, B., et al., Prognostic Value and Clinicopathological Differences of Bmi1 in Gastric Cancer: A Meta-analysis. Anticancer Agents Med Chem, 2016. 16(4): p. 407-13. 52.Long, Q., et al., High peritumoral Bmi-1 expression is an independent prognosticator of poor prognosis in renal cell carcinoma. Tumour Biol, 2015. 36(10): p. 8007-14. 53.Espersen, M.L., et al., Clinical implications of intestinal stem cell markers in colorectal cancer. Clin Colorectal Cancer, 2015. 14(2): p. 63-71. 54.Li, Z., et al., Oncogenic roles of Bmi1 and its therapeutic inhibition by histone deacetylase inhibitor in tongue cancer. Lab Invest, 2014. 94(12): p. 1431-45. 55.Zhang, Y., et al., Expression of Bmi-1 and PAI-1 in esophageal squamous cell carcinoma. World J Gastroenterol, 2014. 20(18): p. 5533-9. 56.Abd El hafez, A. and H.A. El-Hadaad, Immunohistochemical expression and prognostic relevance of Bmi-1, a stem cell factor, in epithelial ovarian cancer. Ann Diagn Pathol, 2014. 18(2): p. 58-62. 57.Zhang, X., et al., IGF-1R and Bmi-1 expressions in lung adenocarcinoma and their clinicopathologic and prognostic significance. Tumour Biol, 2014. 35(1): p. 739-45. 58.Matsuda, Y., et al., One-year chronic toxicity study of Aloe arborescens Miller var. natalensis Berger in Wistar Hannover rats. A pilot study. Food Chem Toxicol, 2008. 46(2): p. 733-9. 59.Zhang, L., et al., Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. Biomed Pharmacother, 2017. 90: p. 222-228. 60.Hsu, C.M., et al., Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells. Biochem Biophys Res Commun, 2010. 392(4): p. 473-8. 61.Jayasuriya, H., et al., Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod, 1992. 55(5): p. 696-8. 62.Frew, T., et al., A multiwell assay for inhibitors of phosphatidylinositol-3-kinase and the identification of natural product inhibitors. Anticancer Res, 1994. 14(6B): p. 2425-8. 63.Huang, Q., H.M. Shen, and C.N. Ong, Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol, 2004. 68(2): p. 361-71. 64.Huang, L.Y., et al., [Effects of emodin on the proliferation inhibition and apoptosis induction in HL-60 cells and the involvement of c-myc gene]. Zhonghua Xue Ye Xue Za Zhi, 2005. 26(6): p. 348-51. 65.Guo, J., et al., Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a. Mol Cell Biochem, 2013. 382(1-2): p. 103-11. 66.Way, T.D., et al., Emodin represses TWIST1-induced epithelial-mesenchymal transitions in head and neck squamous cell carcinoma cells by inhibiting the beta-catenin and Akt pathways. European Journal of Cancer, 2014. 50(2): p. 366-378. 67.Dong, X., et al., Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother Res, 2016. 30(8): p. 1207-18. 68.Ribeiro, I.P., et al., Early detection and personalized treatment in oral cancer: the impact of omics approaches. Mol Cytogenet, 2016. 9: p. 85. 69.Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90. 70.Feng, J.Q., et al., Expression of cancer stem cell markers ALDH1 and Bmi1 in oral erythroplakia and the risk of oral cancer. J Oral Pathol Med, 2013. 42(2): p. 148-53. 71.Sanchez-Beato, M., et al., Variability in the expression of polycomb proteins in different normal and tumoral tissues. A pilot study using tissue microarrays. Mod Pathol, 2006. 19(5): p. 684-94. 72.Kang, M.K., et al., Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br J Cancer, 2007. 96(1): p. 126-33. 73.Chou, C.H., et al., Chromosome instability modulated by BMI1-AURKA signaling drives progression in head and neck cancer. Cancer Res, 2013. 73(2): p. 953-66. 74.Wang, W., et al., Synthesis and biological activity evaluation of emodin quaternary ammonium salt derivatives as potential anticancer agents. Eur J Med Chem, 2012. 56: p. 320-31. 75.Wei, W.T., et al., The distinct mechanisms of the antitumor activity of emodin in different types of cancer (Review). Oncol Rep, 2013. 30(6): p. 2555-62. 76.Lin, S.Z., et al., Antitumor activity of emodin against pancreatic cancer depends on its dual role: promotion of apoptosis and suppression of angiogenesis. PLoS One, 2012. 7(8): p. e42146. 77.Chen, Y.Y., et al., Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer SCC-4 cells through the inhibition of gene expression of matrix metalloproteinase-9. International Journal of Oncology, 2010. 36(5): p. 1113-1120. 78.Qin, Y., et al., An hTERT/ZEB1 complex directly regulates E-cadherin to promote epithelial-to-mesenchymal transition (EMT) in colorectal cancer. Oncotarget, 2016. 7(1): p. 351-61. 79.Satelli, A., et al., EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression. Oncotarget, 2017. 80.Martin, T.A., et al., Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol, 2005. 12(6): p. 488-96. 81.Lee, Y.T., et al., Cytotoxicity of phenolic acid phenethyl esters on oral cancer cells. Cancer Lett, 2005. 223(1): p. 19-25. 82.Abiko, Y., et al., Alteration of proto-oncogenes during apoptosis in the oral squamous cell carcinoma cell line, SAS, induced by staurosporine. Cancer Lett, 1997. 118(1): p. 101-7.
|