跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃政維
研究生(外文):Cheng-Wei Huang
論文名稱:大黃素抑制口腔癌細胞中Bmi1誘導上皮-間質細胞轉換之研究
論文名稱(外文):Emodin inhibits Bmi1-induced epithelial-mesenchymal transition in oral cancer cells
指導教授:魏宗德
指導教授(外文):Tzong-Der Way
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:58
中文關鍵詞:口腔癌上皮兼職細胞轉換Bmi1大黃素
外文關鍵詞:Oral cancerEMTBmilEmodin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
口腔癌是世界上十大最常見的癌症之一,每年有超過50萬人確診;於台灣十大癌症死因排名第四,口腔癌的根治相當困難,復發率高且復發時間短,最近研究顯示,癌症的治癒與其轉移有關。上皮-間質細胞轉換(Epithelial-Mesenchymal Transition)是在癌細胞的轉移中扮演著很重要的機轉,上皮細胞失去細胞間的黏附性,進而轉換成具有高度轉移能力的間質細胞。調節EMT的分子機制有許多種,Bmi1(the polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog)蛋白就是其中之一。過去研究指出,Bmi1具有許多功能,包含調節細胞生長、調節EMT發生及幹細胞的自我更新…等。在本篇研究中,主要目的為找到可以抑制Bmi1蛋白表現的天然化合物。我們發現,大黃根部主要成分大黃素,可以降低OECM-1及SAS細胞中的Bmi1蛋白表現。另外,大黃素能夠抑制這兩株細胞的增生、改變細胞型態、降低爬行以及侵襲能力。此外,大黃素能透過抑制Bmi1蛋白下游AKT路徑抑制EMT。總體上,我們的研究證明了大黃素對於口腔癌的治療可能有相當的潛力。
Oral cancer is a malignant neoplasia which arises on the lip or oral cavity. Oral cancer is frequently associated with metastasis to draining lymph nodes, and this event is correlated with poor prognosis and reduced survival rates. Epithelial-mesenchymal transition (EMT) is a crucial event required for the invasion and progression of carcinogenesis, in the progress of EMT, the epithelial cells lose cell-cell adhesion to turn into mesenchymal cells and gain migration ability. There are many pathways and transcription factors can regulate EMT, Bmi1 was one of them. Bmi1, the polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog, induces cell cycle, regulates EMT transition, maintains the self-renewal capacity of stem cells, and is frequently overexpressed in human cancers, including oral cancer. In this study, we aim to test whether natural compounds could inhibit the expression of Bmi1. We found that emodin, a predominant compound from the root of rhubarb can decrease Bmi1 expression in OECM-1 and SAS cells. Moreover, emodin inhibit cell proliforlation and changed cell morphology in these two cells. Besides, emodin could inhibit migration and invasion ability. Emodin also inhibited EMT though down-regulating Akt pathway. Overall, our study indicated that emodin have the potent therapeutic effect in oral cancer.
第一章 研究源起 1
第一節 惡性腫瘤與轉移 1
1.2.1 細胞轉形及起始階段(Transformation and initiation): 2
1.2.2 腫瘤生長階段(Neoplastic growth): 3
1.2.3 血管新生階段 4
1.2.4 癌細胞侵犯階段(Invasion): 5
1.2.4.1 細胞的延展作用(Extension of directed protrusion) 6
1.2.4.2 細胞的錨定作用(Anchoring of protruisions to the substrate or the ECM): 6
1.2.4.3 Actomyosin filament 的鏈結階段: 7
1.2.4.4 最終階段: 7
第二節 口腔癌 9
2.1吸菸 9
2.2飲酒 10
2.3 嚼檳榔 10
2.4其他 11
第二章 文獻回顧 14
第一節 上皮細胞-間質細胞轉換 (Epithelial-mesenchymal transition; EMT) 14
2.1.1 第一階段 侵犯 (invasion) 15
2.1.2 第二階段 內滲 (Intravasation) 15
2.1.3 第三階段 外滲 (Extravasation) 15
第二節Bmi1 18
第三節 大黃素 19
第四節 研究動機 20
第五節 實驗設計 21
第四章 研究結果 22
第一節 天然化合物在口腔癌中抑制Bmi1的效果 22
第二節 大黃素對於OECM-1及SAS細胞存活率影響 23
第三節 大黃素在OECM-1及SAS細胞中抑制Bmi1的效果 25
第四節 大黃素對於OECM-1及SAS細胞型態的改變 26
第五節 大黃素在OECM-1及SAS中對於細胞爬行能力的影響 27
第六節 大黃素對於OECM-1及SAS細胞中侵襲能力的影響 29
第七節 大黃素對於OECM-1及SAS細胞中EMT相關的生物標誌影響 31
第八節、大黃素對於OECM-1和SAS細胞中AKT/ β-catenin/GSK-3β/Aurora A路徑的影響 33
第五章 討論 36
第六章 結論 39
第七章、材料與方法 40
第一節 研究材料 40
7.1.1 、細胞株 40
7.1.2 、藥品與試劑 40
7.1.3 抗體 42
7.1.4主要儀器與耗材 42
第二節 細胞培養 (Cell culture) 44
7.2.1 細胞培養與繼代 44
7.2.2 細胞冷凍保存 44
7.2.3 活化冷凍細胞 45
第三節 細胞型態觀察 (Cell morphology observation) 45
第四節 細胞增生速率分析 (Cell proliferation assay) 45
第五節 細胞存活率分析 (MTT assay) 46
第六節 西方墨點法 (Western blot) 47
7.6.1 萃取蛋白質 (Protein extraction) 47
7.6.2 蛋白質濃度測定 47
7.6.3 蛋白質電泳分析 (SDS-PAGE) 48
7.6.4 轉漬與影像呈現 49
第七節 細胞爬行能力試驗 (Wound Healing Assay) 50
第八節 細胞侵襲實驗 (Invasion assay) 51
第九節 統計方法 52
第八章 參考文獻 53
1.Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
2.Sajnani, K., et al., Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie, 2017. 135: p. 164-172.
3.Kim, J.W. and C.V. Dang, Cancer''s molecular sweet tooth and the Warburg effect. Cancer Res, 2006. 66(18): p. 8927-30.
4.Huang, J., et al., Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals. Breast Cancer Res Treat, 2017. 161(2): p. 229-243.
5.Jones, R.G. and C.B. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev, 2009. 23(5): p. 537-48.
6.Sun, N., et al., Tripartite motif containing 25 promotes proliferation and invasion of colorectal cancer cells through TGF-beta signaling. Biosci Rep, 2017.
7.Sae-Lao, T., et al., Sulfated Galactans from Red Seaweed Gracilaria fisheri Target EGFR and Inhibit Cholangiocarcinoma Cell Proliferation. Am J Chin Med, 2017. 45(3): p. 615-633.
8.Kretzschmar, M., et al., A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev, 1999. 13(7): p. 804-16.
9.Massague, J. and R.R. Gomis, The logic of TGFbeta signaling. FEBS Lett, 2006. 580(12): p. 2811-20.
10.Sista, A.K., et al., Endovascular Interventions for Acute and Chronic Lower Extremity Deep Venous Disease: State of the Art. Radiology, 2015. 276(1): p. 31-53.
11.Naghavi, N., et al., Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling. Microvasc Res, 2016. 107: p. 51-64.
12.Siveen, K.S., et al., Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges. Curr Vasc Pharmacol, 2017.
13.Li, D., et al., Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects. Cancer Letters, 2016. 377(2): p. 164-173.
14.Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6.
15.Kim, Y., M.A. Stolarska, and H.G. Othmer, The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol, 2011. 106(2): p. 353-79.
16.Green, C.E., et al., Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One, 2009. 4(8): p. e6713.
17.Mitchison, T.J. and L.P. Cramer, Actin-based cell motility and cell locomotion. Cell, 1996. 84(3): p. 371-9.
18.Sheetz, M.P., et al., Cell migration as a five-step cycle. Biochem Soc Symp, 1999. 65: p. 233-43.
19.Soll, D.R., The use of computers in understanding how animal cells crawl. Int Rev Cytol, 1995. 163: p. 43-104.
20.Small, J.V., et al., How do microtubules guide migrating cells? Nat Rev Mol Cell Biol, 2002. 3(12): p. 957-64.
21.Pollard, T.D., Reflections on a quarter century of research on contractile systems. Trends Biochem Sci, 2000. 25(12): p. 607-11.
22.行政院衛生福利部國民健康署, 2015.
23.http://www.docteurclic.com/maladie/metastase.aspx.
24.Boffetta, P., et al., Smokeless tobacco and cancer. Lancet Oncol, 2008. 9(7): p. 667-75.
25.Altieri, A., et al., Wine, beer and spirits and risk of oral and pharyngeal cancer: a case-control study from Italy and Switzerland. Oral Oncol, 2004. 40(9): p. 904-9.
26.Wu, W., et al., Clinical Research of Oral Mucosal Transudate Human Immunodeficiency Virus (1/2) Antibody Detection Kit (Colloidal Gold). Vox Sanguinis, 2009. 97: p. 152-152.
27.Nohata, N., M.C. Abba, and J.S. Gutkind, Unraveling the oral cancer lncRNAome: Identification of novel lncRNAs associated with malignant progression and HPV infection. Oral Oncol, 2016. 59: p. 58-66.
28.Scully, C. and J. Bagan, Oral squamous cell carcinoma overview. Oral Oncology, 2009. 45(4-5): p. 301-308.
29.Lodi, G., et al., Interventions for treating oral leukoplakia. Cochrane Database Syst Rev, 2006(4): p. CD001829.
30.Bierie, B. and H.L. Moses, Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev, 2010. 21(1): p. 49-59.
31.Kalluri, R., EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest, 2009. 119(6): p. 1417-9.
32.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
33.Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.
34.Zuo, J., et al., Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT. Med Oncol, 2016. 33(2): p. 15.
35.Palma Cde, S., et al., Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells. Mol Cell Proteomics, 2016. 15(3): p. 906-17.
36.Zhang, T., et al., Slug overexpression is associated with poor prognosis in thymoma patients. Oncol Lett, 2016. 11(1): p. 306-310.
37.Li, K., et al., CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. Tumour Biol, 2016. 37(1): p. 419-24.
38.Gou, Y., et al., RUNX3 regulates hepatocellular carcinoma cell metastasis via targeting miR-186/E-cadherin/EMT pathway. Oncotarget, 2017.
39.Maeda, M., K.R. Johnson, and M.J. Wheelock, Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci, 2005. 118(Pt 5): p. 873-87.
40.Lee, C.W., et al., TNF-alpha induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-kappaB/p300 binding in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2007. 292(3): p. L799-812.
41.Orlichenko, L.S. and D.C. Radisky, Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis, 2008. 25(6): p. 593-600.
42.Zhao, Y.L., R.T. Zhu, and Y.L. Sun, Epithelial-mesenchymal transition in liver fibrosis. Biomed Rep, 2016. 4(3): p. 269-274.
43.Ishida, A., et al., Cloning and chromosome mapping of the human Mel-18 gene which encodes a DNA-binding protein with a new ''RING-finger'' motif. Gene, 1993. 129(2): p. 249-55.
44.Wu, C.Y., J.J. Hung, and K.J. Wu, Linkage between Twist1 and Bmi1: molecular mechanism of cancer metastasis/stemness and clinical implications. Clin Exp Pharmacol Physiol, 2012. 39(8): p. 668-73.
45.Wu, W.R., et al., Methylation-associated silencing of miR-200b facilitates human hepatocellular carcinoma progression by directly targeting BMI1. Oncotarget, 2016. 7(14): p. 18684-93.
46.Ren, H., et al., TWIST1 and BMI1 in Cancer Metastasis and Chemoresistance. J Cancer, 2016. 7(9): p. 1074-80.
47.Guo, S., et al., miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett, 2014. 344(1): p. 40-46.
48.Wei, X.L., et al., ERalpha inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget, 2015. 6(25): p. 21704-17.
49.Paranjape, A.N., et al., Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer, 2014. 14: p. 785.
50.Yuan, C., et al., Polycystic ovary syndrome patients with high BMI tend to have functional disorders of androgen excess: a prospective study. J Biomed Res, 2016. 30(3): p. 197-202.
51.Yuan, B., et al., Prognostic Value and Clinicopathological Differences of Bmi1 in Gastric Cancer: A Meta-analysis. Anticancer Agents Med Chem, 2016. 16(4): p. 407-13.
52.Long, Q., et al., High peritumoral Bmi-1 expression is an independent prognosticator of poor prognosis in renal cell carcinoma. Tumour Biol, 2015. 36(10): p. 8007-14.
53.Espersen, M.L., et al., Clinical implications of intestinal stem cell markers in colorectal cancer. Clin Colorectal Cancer, 2015. 14(2): p. 63-71.
54.Li, Z., et al., Oncogenic roles of Bmi1 and its therapeutic inhibition by histone deacetylase inhibitor in tongue cancer. Lab Invest, 2014. 94(12): p. 1431-45.
55.Zhang, Y., et al., Expression of Bmi-1 and PAI-1 in esophageal squamous cell carcinoma. World J Gastroenterol, 2014. 20(18): p. 5533-9.
56.Abd El hafez, A. and H.A. El-Hadaad, Immunohistochemical expression and prognostic relevance of Bmi-1, a stem cell factor, in epithelial ovarian cancer. Ann Diagn Pathol, 2014. 18(2): p. 58-62.
57.Zhang, X., et al., IGF-1R and Bmi-1 expressions in lung adenocarcinoma and their clinicopathologic and prognostic significance. Tumour Biol, 2014. 35(1): p. 739-45.
58.Matsuda, Y., et al., One-year chronic toxicity study of Aloe arborescens Miller var. natalensis Berger in Wistar Hannover rats. A pilot study. Food Chem Toxicol, 2008. 46(2): p. 733-9.
59.Zhang, L., et al., Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. Biomed Pharmacother, 2017. 90: p. 222-228.
60.Hsu, C.M., et al., Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells. Biochem Biophys Res Commun, 2010. 392(4): p. 473-8.
61.Jayasuriya, H., et al., Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod, 1992. 55(5): p. 696-8.
62.Frew, T., et al., A multiwell assay for inhibitors of phosphatidylinositol-3-kinase and the identification of natural product inhibitors. Anticancer Res, 1994. 14(6B): p. 2425-8.
63.Huang, Q., H.M. Shen, and C.N. Ong, Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol, 2004. 68(2): p. 361-71.
64.Huang, L.Y., et al., [Effects of emodin on the proliferation inhibition and apoptosis induction in HL-60 cells and the involvement of c-myc gene]. Zhonghua Xue Ye Xue Za Zhi, 2005. 26(6): p. 348-51.
65.Guo, J., et al., Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a. Mol Cell Biochem, 2013. 382(1-2): p. 103-11.
66.Way, T.D., et al., Emodin represses TWIST1-induced epithelial-mesenchymal transitions in head and neck squamous cell carcinoma cells by inhibiting the beta-catenin and Akt pathways. European Journal of Cancer, 2014. 50(2): p. 366-378.
67.Dong, X., et al., Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother Res, 2016. 30(8): p. 1207-18.
68.Ribeiro, I.P., et al., Early detection and personalized treatment in oral cancer: the impact of omics approaches. Mol Cytogenet, 2016. 9: p. 85.
69.Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
70.Feng, J.Q., et al., Expression of cancer stem cell markers ALDH1 and Bmi1 in oral erythroplakia and the risk of oral cancer. J Oral Pathol Med, 2013. 42(2): p. 148-53.
71.Sanchez-Beato, M., et al., Variability in the expression of polycomb proteins in different normal and tumoral tissues. A pilot study using tissue microarrays. Mod Pathol, 2006. 19(5): p. 684-94.
72.Kang, M.K., et al., Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br J Cancer, 2007. 96(1): p. 126-33.
73.Chou, C.H., et al., Chromosome instability modulated by BMI1-AURKA signaling drives progression in head and neck cancer. Cancer Res, 2013. 73(2): p. 953-66.
74.Wang, W., et al., Synthesis and biological activity evaluation of emodin quaternary ammonium salt derivatives as potential anticancer agents. Eur J Med Chem, 2012. 56: p. 320-31.
75.Wei, W.T., et al., The distinct mechanisms of the antitumor activity of emodin in different types of cancer (Review). Oncol Rep, 2013. 30(6): p. 2555-62.
76.Lin, S.Z., et al., Antitumor activity of emodin against pancreatic cancer depends on its dual role: promotion of apoptosis and suppression of angiogenesis. PLoS One, 2012. 7(8): p. e42146.
77.Chen, Y.Y., et al., Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer SCC-4 cells through the inhibition of gene expression of matrix metalloproteinase-9. International Journal of Oncology, 2010. 36(5): p. 1113-1120.
78.Qin, Y., et al., An hTERT/ZEB1 complex directly regulates E-cadherin to promote epithelial-to-mesenchymal transition (EMT) in colorectal cancer. Oncotarget, 2016. 7(1): p. 351-61.
79.Satelli, A., et al., EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression. Oncotarget, 2017.
80.Martin, T.A., et al., Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol, 2005. 12(6): p. 488-96.
81.Lee, Y.T., et al., Cytotoxicity of phenolic acid phenethyl esters on oral cancer cells. Cancer Lett, 2005. 223(1): p. 19-25.
82.Abiko, Y., et al., Alteration of proto-oncogenes during apoptosis in the oral squamous cell carcinoma cell line, SAS, induced by staurosporine. Cancer Lett, 1997. 118(1): p. 101-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊