跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭焌瑋
研究生(外文):Chun-Wei Peng
論文名稱:複合式壓電馬達設計
論文名稱(外文):Design of A Composite Ceramic Motor
指導教授:丁鏞
指導教授(外文):Yung Ting
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:壓電陶瓷馬達複合式型壓電陶瓷馬達
外文關鍵詞:piezoelectric motorcomposite piezoelectric motor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目標為研製一種具雙向推動功能之d14+d33複合式型壓電陶瓷馬達,並比較一般常使用d15與d14的壓電陶瓷馬達。與d14壓電馬達相比d14+d33有較大橫向及縱向位移輸出,與d15壓電元件相比,一般常使用的d15壓電陶瓷元件為了產生更大的輸出速度與力,必須沿著極化方向以增加其厚度,然而d14+d33壓電陶瓷容易藉由增加元件垂直於接觸面方向的長度來達到增加輸出的目的,並不須透過高電壓的極化與提升驅動電壓的方式,另也能藉由增加尺寸來降低其壓電元件的自然共振頻率。本論文使用壓電陶瓷材料為PZT-8,其具有較高的機械品質係數外,亦具有較大的位移量而適用於壓電致動器。利用Ansys有限元素模擬分析壓電陶瓷馬達定子之共振模態以及簡諧分析,並進行實驗測試後,經驗證兩者結果相近。另也探討其驅動方式以及運動軌跡。亦將馬達架設於平台與旋轉軸承上進行馬達功能測試。對d14+d33壓電致動元件輸入為±150V的電壓,並分別能產生1.66µm的縱向振幅以及1.85µm的橫向振幅。在將馬達架設於線性滑台以及旋轉軸承(轉子)上,可以得到最大線性速度與力分別約為44.4mm/s及3.52N,以及最大轉速與扭力分別約為89.661rpm及0.049Nm。
A new type of piezoelectric ceramic motor using d14+d33 to generate face-shear deformation is developed. In particular, two-way operation to provide forward and backward linear motion as well as clockwise and counterclockwise rotary motion is completely designed. Compared to d14 piezoelectric motor, the composite d14 + d33 type has a larger horizontal and vertical displacement output. Because of the polarization direction and the driving electrode of the usually seen d15 ceramic motor, large input voltage needs to apply to preserve enough electric field while attempting to increase the deformation by increasing the thickness. Different from d15, increasing height will increase deformation but with no need of applying large input voltage to maintain the electric field, and reduce the resonance frequency. Because of the above advantage, structure of d14 +d33 piezoelectric motor would be ideally built with a nearly square shape. Mode shape and harmonic analysis by using ANSYS simulation are carried out to search for ideal deformation under certain resonance frequency. Both analytical and experimental results are in a good agreement. The driving signal and motion trajectory is also investigated. Ceramics PZT-8 is used to design piezoelectric actuator. For a single piece of the built sample actuator with ±150V applied voltage, it is able to generate vertical and transverse vibration amplitude of about 1.66µm and 1.85µm respectively. The stator integrated with a linear stage (the carriage) and rotary bearings (rotor) as well as employed with an appropriate signal, the maximum linear speed and force about 44.4mm/sec and 3.52N. A rotation speed and torque is measured about 89.661rpm and 0.049Nm respectively.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 4
1.3論文架構 7
第二章 剪應變型壓電馬達設計原理 8
2.1剪應變型壓電馬達之驅動來源 8
2.2 壓電致動元件介紹 9
2.3 剪應變型壓電馬達之傳動機構及傳動模式 10
2.4 定子之機械品質係數Qm與機電耦合係數kd 11
2.5 控制模式 12
第三章 剪應變型壓電馬達設計分析 14
3.1剪應變型壓電馬達系統之結構 14
3.2剪應變型壓電馬達之設計 15
3.2.1 剪向壓電陶瓷致動器與d14形式之壓電致動元件. 15
3.2.2 d14形式壓電元件與運動原理 17
3.2.3 d14形式壓電元件與d15形式壓電元件不同之處 21
3.2.4 d15與d14形變方式 22
3.3 雙向複合式剪應變型壓電馬達之設計 23
3.3.1壓電元件以矩形設計 23
3.3.2壓電元件以方型設計 23
3.3.3 d14+d33馬達之設計 24
3.3.4向剪應變型壓電致動器極化 27
3.3.5 PFM量測d33與d14 Boundary 29
3.4篩選的模態(Extracted number of modes 31
3.4.1剪應變型馬達之定子模擬分析 34
3.4.2共振模態分析 34
3.5 d14+d33複合式剪應變型壓電馬達定子之質點軌跡 43
第四章 實驗結果與討論 45
4.1剪應變型壓電馬達定子之量測 45
4.1.1 剪應變型壓電馬達定子之推力量測 47
4.1.2 剪應變型壓電馬達定子之振幅量測 49
4.1.3 複合式型壓電馬達解析度(resolation) 52
4.2剪應變型壓電馬達旋轉平台實驗 53

4.2.1應變型壓電馬達旋轉平台轉速實驗 54
4.3剪應變型壓電馬達旋轉平台動態扭力轉速實驗 56
4.3.馬達效率 58
4.4剪應變型壓電馬達線性平台系統實驗 59
4.4.1剪應變型壓電馬達線性平台系統推力實驗 61
第五章 結論與未來展望 63
5.1 結論 63
5.2 未來展望 65
參考文獻 66

圖目錄
圖2.1 d14形變方式示意圖……………………………………………..…………..8圖3.1雙向剪應變型壓電馬達之結構…………………………………………...…15
圖3.2 傳統剪向d15壓電致動元件製作示意圖…………….……………..………16
圖3.3 d14形式剪向壓電致動元件製作示意圖……………………...…………….17
圖3.4 d14壓電陶瓷體極化軸與各軸向定義..………………...……......…..……...17
圖3.5 平面切變之壓電效應…….……………….……..…………....….………….18
圖3.6 d14壓電元件全波共振形變……………………….………….……………..19
圖3.7 d14壓電元件半波共振形變……………………….………….……………..19
圖3.8 d15壓電陶瓷體極化軸與各軸向定義……………………..………………..20
圖3.9 d14壓電陶瓷體極化軸與各軸向定義…………………………………........21
圖3.10 d15壓電馬達推動平台式意圖…….............................................................22
圖3.11 d14壓電馬達推動平台式意圖…..………..…….........................................22
圖3.12方形板的面切變.……….………...…...........................................................24
圖3.13圖3.13厚度尺寸與位移的關係圖.................................................................25
圖3.14單塊壓電片上進行多區極化示意…...……………………..........................25
圖3.15 d14+d33雙向致動馬達作動………......…..………………….………... ....27
圖3.16 d14極化的電極進行極化圖…………………..……………..…………….28
圖3.17 d14極化後再進行d33極化,斜線部分為d33電...................... ..................28
圖3.18為d14與d33的邊界…..…..….…………….……………............................29
圖3.19為壓電陶瓷掃描實體圖………………..…………....……...........................29
圖3.20 d14與d33用PFM測量之邊界..…………………….......……...................30
圖3.21 d33與d14尺寸與頻率關係圖.....................................................................31
圖3.22 d33與d14尺寸與頻率關係圖 ....................................................................32
圖3.23 d14與d33不同長度尺寸下的剪向與縱向位移輸出圖............................33
圖3.24剪應變型馬達之定子模型圖.......................................................................34
圖3.25剪應變型馬達定子分析之拘束圖...............................................................38
圖3.26 剪應變型馬達定子之參考節點...................................................................39
圖3.27分析為尺寸長14mm,寬為12mm................................................................40
圖3.28分析為厚度3mm..........................................................................................40
圖3.29頻率響應下之縱向形變分布.......................................................................41
圖3.30頻率響應下之剪向形變分布.......................................................................41
圖3.31馬達定子簡諧分析圖(z軸)..........................................................................42
圖3.32馬達定子簡諧分析圖(y軸)..........................................................................42
圖3.33定子輸出頭表面產生質點橢圓運動示意圖...............................................43
圖3.34 d33+d14壓電馬達推動平台運動橢圓軌跡..............................................44
圖4.1剪應變型壓電馬達定子實體圖.....................................................................46
圖4.2壓電致動器阻抗分析圖.................................................................................46
圖4.3定子推力量測實驗示意圖….……………………………….……………...47
圖4.4定子推力量測架設示意圖.............................................................................48
圖4.5電壓與推力關係圖.……...…….......................................................................49
圖4.6雷射振動量測系統(Polytec OFV-5000)量測圖............................................50
圖4.7不同驅動電壓下馬達定子之振動位移量.......................................................51
圖4.8複合式型壓電馬達解析度...............................................................................52
圖4.9複合式型壓電馬達解析度示波器圖...............................................................52
圖4.10 旋轉平台架設示意圖...................................................................................53
圖4.11 剪應變型馬達旋轉系統轉速實驗實體圖...................................................54
圖4.12 不同驅動電壓下馬達輸出轉速…………….……...……..........................55
圖4.13 不同轉速下輸出動態扭力……………………..…..…...............................57
圖4.14 不同電壓下轉速與扭力值...…………….....….………..............................57
圖4.15壓電馬效率與轉速及扭力關係圖………………..………….......................58
圖4.16 壓電馬達線性平台架設圖….………….……….……................................59
圖4.17 剪應變型壓電馬達速度實驗架構圖….………….…………….................60
圖4.18 不同驅動電壓下平台之輸出….………….….…………............................60
圖4.19驅動電壓與推力輸出關係圖….………….………….…............................62
圖5.1 為不加裝輸出頭用Ansys分析有質點橢圓運動圖....................................65











表目錄
表3.1尺寸與位移量的大小……………………………...………….……….….…33
表3.2定子之參數表……………………..................................................................35
表4.1剪應變型壓電馬達定子模擬與阻抗量測頻率以及實際驅動頻率.…….…47
表4.2剪應變型壓電馬達不同電壓之輸出推力...……………….….......................48
表4.3定子於不同電壓下之剪向與縱向振動位移量測結果....................................50
表4.4不同電壓之最大輸出轉速………..…….………….………………………..54
表4.5剪應變型壓電旋轉馬達不同轉速之輸出動態扭力........................................56
表4.6壓電馬效率與轉速與扭力值............................................................................58
表4.7不同電壓之最大輸出速度………..…….…………..……...............................60
表4.8不同電壓輸出之推力........................................................................................61
[1] S. Dong, S. P. Lim, K. H. Lee, J. Zhang, and L. C. Lim, “Piezoelectric Ultrasonic Micromotor with 1.5mm Diameter,” IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, vol. 50, pp. 361-367, 2003.
[2] T. Sashida, and T. Kenjo, “An Introduction to Ultrasonic Motors,” Clarendon Press, Oxford, Japan, 1993.
[3] K. Uchino, “Piezoelectric Ultrasonic Motors: Overview,” Smart Materials and Structures, vol. 7, pp.273-285, 1998.
[4] S. Ueha, “Present Status of Ultrasonic Motors,” IEEE Proceedings of Ultrasonics Symposium, Vol. 9,pp. 749-753, 3-6 Oct. 1989.
[5] J. Toyoda, and K. Morano, “A Small-Size Ultrasonic Linear Motor,”Japanese Journal of Applied Physics, vol. 30, no. 9B, pp. 2274-2276, Sept. 1991.
[6] 見城尚志,指田年生著,許溢适編譯,”超音波電動機基礎”,文笙書局,1993。
[7] H. Barth, “Ultrasonic Driven Motor”, IBM Technical Disclosure Bull, 16-7, pp.2263, 1973.
[8] V. Lavrinenco, V. Vishnevski, and I. Kartashev, Radio Electron, pp.13-57, 1976.
[9] M. Kurosawa and S. Ueda, “Hybrid transducer Type Ultrasonic Motor,” IEEE Trans. UFFC, 38-2, pp.89-92, 1991.
[10] A. Manabu, Y. Tomikawa, T. Takano, “Thin Rotary and Linear Ultrasonic Motors Using a Double-mode Piezoelectric Vibrator of The First Longitudinal and Second Bending Mode,” Jpn. J. Appl. Phys. Vol.31, pp.3073-3076, 1992.
[11] A. Manabu, Y. Tomikawa, T. Takano, “Ultrasonic Motors Using Longitudinal and Bending Multimode Vibrators with Mode Coupling by Externally Additional Asymmetry or Internal Nonlinearty,” Jpn. J. Appl. Phys. Vol. 31, pp.3077-3080, 1992.
[12] V. Snitka, D. Zukauskas, V. Mizariene, “Positioning to Nanometer Resolution with Ultrasonic Actuators,” The 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Vol. 1, Issue: 3, pp.25 - 29, June 1995.
[13] R.-F. Fung and C.-R. Tseng, “Dynamic Simulation of A Bimodal Ultrasonic Motor by New Hybrid Laplace Transform/Finite Element Method” Journal of Sound and ibration, 226(4), pp.625-644, 1999.
[14] Nanomotion,“Msp1 Data Sheer”, 2000.
[15] Y. Ting; J.-S. Huang, F.-K. Chuang, C.-C. Li, “Dynamic analysis and optimal design of a piezoelectric motor,”Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, Vol. 50, Issue:6, pp.601 – 613, June 2003.
[16] M.-S. Tsai, C.-H. Lee, S.-H. Hwang, “Dynamic modeling and analysis of a bimodal ultrasonic motor, ”Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on , Vol. 50 , Issue: 3, pp.245 - 256, March 2003.
[17] S-H. Jeong, H.-K Lee., Y.-J. Kim, H.-H. Kim, and K.-J. Lim, “Vibration Analysis of the Stator in Ultrasonic Motor by FEM,” The 5th International Conference on Properties and Applications of Dielectric Material, Vol. 2 , pp. 1091-1094, 25-30 May 1997.
[18] X. Chen, W. Huang, “A Novel Linear Motor with Piezoelectric Stacks”, International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010.
[19] X. Chen, W. Huang, “A Novel Linear Motor with Piezoelectric Stacks” , Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi''an, China, August 4-7, 2010.
[20] J.-S. Zeng, W.-H. Luo, J.-X. Lei, “Affects of pre-pressure on ultrasonic motor output performance”, Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2010.
[21] W. R. Cook, and H. Jaffe , “Piezoelectric Ceramics,” Gould Inc. Cleveland, Ohio, U.S.A., 1971.
[22] S. Ueha, Y. Tomikawa, M. Kurosawa, and N. Nakamura, “Ultransonic Motors Theory and Applications,” Clarendon Press, Oxford, 1993.
[23] S.-H. Lee, Y. Roh, W.-S. Han, and Y.-B. Kim, “Design and Fabrication of Ultrasonic Traveling Wave Bi-directional Linear Motors,” IEEE Proceedings of Ultrasonics Symposium, Vol. 1,17-20, pp. 657-660, 1999.
[24] T. Senjyu, S. Yokoda, and K. Uezato, “Position Control of Ultrasonic Motors Using Sliding Mode Control with Multiple Control Inputs,”Thirteenth Annual Conference Proceedings of Applied Power Electronics Conference and Exposition, Vol. 2, pp. 597-602, 1998.
[25] G. Bal and E. Bekirglu, “Servo Speed Control of Travelling-wave Ultrasonic motor Using Digital Signal Processor,” Sensors and Actuators A, Vol. 109, pp. 212-219, 2004.
[26] C.-Y. Lu, J.-L. Li, and W.-Y. Pi, “Ultrasonic Motors Using Shear-type Piezoelectric Ceramics,” Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), pp.465-469, Xiamen, China, 10-13 Dec. 2010.
[27] Y.-J. Shieh, Y. Ting, B.-K. Hou, C.-C. Yeh, “High Speed Piezoelectric Motor,” Applications of Ferroelectrics held jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), pp.465-469, Aveiro, 9-13 July 2012.
[28] K. Kim, S. Zhang, and X. Jiang, “Surface Acoustic Load Sensing Using a Face-Shear PIN–PMN–PT Single-Crystal Resonator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.59, no.11, Nov. 2012.
[29] Q. Pan, J. Wang, L. Yang, M.-C. Chao, “Face-shear Vibration of AT-cut Quartz Plate,” Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), pp.123-127, Xiamen, China, 10-13 Dec. 2010.
[30] 田中哲郎,「壓電陶瓷材料」,科學出版社,1982。
[31] 劉劍,趙純生,基於矩形薄板面內振動的直線型超聲波馬達的研究
[32] A. H. Meitzler, H. M. O’Brian, and H.F. Tiersten, “Definition and Measurement of Radial Mode Coupling Factors in Piezoelectric Ceramic Materials with Large Variation in Poisson’s Ratio,” IEEE Trans. On Sonics and Ultrasonics, SU-20, pp.233-239, 1973.
[33] 王衿奉,「壓電振動理論與應用」,科學出版社,2011。
[34] R. D. Mindlin, “Thickness-twist Vibrations of a Quartz Strip,” International Journal of Solids and Structures, vol.7, pp.1-4, April 1971.
[35] R. Holland, , E.-P. EerNiss, “Accurate Measurement of Coefficients in a Perroelectric Ceramic,” IEEE Trans. On Sonics and Ultrasonics, SU-16, pp.173-198, 1969.
[36]超聲馬達技術與應用 趙純生 著
[37] 吳新開,超聲波電動機原理與控制,中國電力出版社,2009
[38] 王矜奉,王春明壓電振動理論與應用
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top