跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡安祺
研究生(外文):An-Chi Chien
論文名稱:硫酸銅與低溫貯藏對台農17號鳳梨果實物化性狀與內部褐化之影響
論文名稱(外文):Effects of Copper Sulfate and Low Temperature Storage on Physical-chemical Characteristics and Internal Browning of Tainung No.17 Pineapple Fruits
指導教授:陳京城
指導教授(外文):Ching-Cheng Chen
口試委員:楊耀祥施昭彰陳京城
口試委員(外文):Yau-Shiang YangJau-Chang ShihChing-Cheng Chen
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:鳳梨內部褐化低溫貯藏
外文關鍵詞:pineappleinternal browninglow temperature storage
相關次數:
  • 被引用被引用:2
  • 點閱點閱:819
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
鳳梨果實經低溫貯藏後易發生寒害,導致內部褐化 (internal browning),造成果實品質降低,且因無法由外觀判斷,而影響商品信譽並造成經濟損失。本研究主要目的為調查‘台農17號’金鑽鳳梨果肉銅含量增加是否會增加鳳梨果實內部褐化發生率,以及使用不同溫度貯藏對果實內部褐化發生之影響,探討鳳梨果實發生內部褐化之關鍵因子。
‘台農17號’鳳梨果實於田間噴施硫酸銅,果皮銅含量顯著高於果肉,而採收後以低溫貯藏並移至室溫2天,鳳梨果肉銅含量上升會伴隨鳳梨果實內部褐化發生。當果實於採收後處理硫酸銅,並以低溫貯藏並移至室溫2天,果肉銅含量有上升之情形,且銅含量上升會伴隨果實內部褐化指數之上昇。
低溫貯藏能延緩果皮轉色。不同低溫貯藏之果實,貯藏1週後皆無發生內部褐化,但移至室溫4天後皆發生褐化,且以4℃貯藏最為嚴重,12℃次之,8℃最輕微。低溫貯藏2週後,果實皆發生果實內部褐化,並在移至室溫後內部褐化更為嚴重。而與4℃及8℃之處理比較,內部褐化程度以12℃貯藏最為嚴重。
鈣離子於貯藏期間由內部果肉往外部移動,可能影響‘台農17號’鳳梨內部果肉細胞對低溫逆境的耐受性,內部褐化嚴重之鳳梨果實,果肉銅含量也明顯較高。
本研究之貯藏溫度試驗結果顯示,4℃貯藏2周並移至室溫4天的‘台農17號’鳳梨果實內部褐化程度輕微,但果實剖面經PPO基質處理後褐化嚴重。果實低溫貯藏時間越長,移至室溫後果肉PPO活性越高,總蛋白質含量在果實低溫貯藏期間有下降之趨勢,移至室溫後則上升。而低溫貯藏期間鳳梨酵素活性有增加之趨勢,而移至室溫後鳳梨酵素活性則下降,並伴隨內部褐化之發生,鳳梨酵素活性與內部褐化之關係值得更進一步探討。
綜合上述,‘台農17號’鳳梨並不是貯藏溫度越低越容易發生內部褐化,本研究結果顯示8℃貯藏之果實內部褐化比4℃與12℃貯藏之果實輕微,若搭配上蠟或溫湯等貯藏前處理,可能有較佳的貯藏後果實品質。
Pineapple fruits stored at low temperature are easy to develop chilling symptoms, leading to internal browning and fruits quality decreasing. Because there are no external symptoms on affected fruits, it may cause losses of business reputation and profits. The main objective of this study was to investigate whether an increase of copper level in ‘TN17’ pineapples pulp will cause an increase in internal browning incidence, and to analyze the occurrence of internal browning of ‘TN17’ pineapple fruits which were stored at different low temperatures to provide information about the key factor to internal browning development.
After spraying copper sulfate on‘TN17’ pineapple fruits in the field, copper concentrations in the shell were significantly higher than in the pulp. After stored at 8℃ for 1 week and followed at room temperature for 2 days, copper level of flesh slighity increased with internal browning symptom occurrence. Both copper level and internal browning index increased in ‘TN17’ pineapple fruits which were dipped in copper sulfate solution and stored at 8℃ for 1 week followed at room temperature for 2 day.
Low temperature storage can delay ‘TN17’ pineapple skin color development. No internal browning appeared in fruits stored at low temperature for 1 week, however, it occurred in fruits stored at low temperature for 1 week followed by 4 days at room temperature. Internal browning index was significantly increased in fruits stored at 4℃, followed by fruits stored at 12℃ and only slightly increased in fruits stored at 8℃. More severe internal browning was found in fruits stored at low temperature for 2 week, followed at room temperature for 4 days. Fruits stored at 12 ℃ for 2 weeks followed by 4 days at room temperature had the highest internal browning index, compared with 4℃ and 8℃ treatments.
Calcium ions moved from inner pulp to outer pulp during storage may affect the tolerance of the ‘TN17’ pineapple inner pulp cells to low temperature stress. The copper level was significantly higher in pineapple fruits with more severe internal browning.
In this study, ‘TN17’ pineapples stored at 4℃ for 2 weeks followed by 4 days at room temperature had slightly internal browning, but fruit section was seriously turned brown after treated with PPO substrate. The longer low temperature storage period, the higher PPO activity was found after 4 days at room temperature. The total protein content of fruits decreased during low temperature storage, and then increased after stored at room temperature. The bromelain activity increased after stored at low temperature, then decreased after moved to room temperature with internal browning occurrence. The relationship between bromelain activity and internal browning is worthy of further study.
Taken together, for ‘TN17’ pineapples, it is not that the lower storage temperature, the more internal browning occurrence. In this study, the results showed that 8℃ storage had lower internal browning incidence than 4℃ and 12℃ storage. In combination with waxing or hot water dipping before storage, pineapples may have better storage quality.
誌謝 i
摘要 ii
Abstract iii
目次 v
表目次 viii
圖目次 x
前言 1
前人研究 2
一、鳳梨產業現況 2
二、鳳梨果實生長與發育 2
三、鳳梨果實採後生理 2
四、鳳梨果實內部褐化相關酵素與反應機制 3
五、鳳梨果實低溫貯藏之生理變化 5
(一)鳳梨果實低溫貯藏期間膜體及細胞變化 5
(二)鳳梨果實低溫貯藏期間內生賀爾蒙變化 6
1. Abscisic acid (ABA) 6
2. Gibberellins (GAs) 6
六、鳳梨果實內部因子與採後處理對內部褐化發生的影響 6
(一)品種選擇 6
(二)鳳梨果實成熟度影響內部褐化發生率 7
(三)低溫貯藏前塗蠟處理 7
(四)低溫貯藏前溫度處理 7
(五)低溫貯藏前植物生長調節劑處理 8
(六)鳳梨果實果肉礦物元素含量 8
(七)鳳梨果實抗氧化及活性氧物質 9
(八)Bromelain 9
材料與方法 11
試驗一、硫酸銅處理對‘台農17號’鳳梨果實內部褐化發生之影響 11
一、田間硫酸銅處理對果實不同部位銅含量之影響 11
(一)試驗材料 11
(二)試驗方法 11
1.性狀調查 11
2.元素分析 11
二、採後硫酸銅處理對果實冷藏後果肉物化性狀之影響 12
(一)試驗材料 12
(二)試驗方法 13
1.性狀調查 13
2.元素分析 13
3.多酚氧化酵素(Polyphenol oxidase; PPO)活性分析 13
4.總蛋白質含量分析 13
5.游離胺基酸(Free amino acid; FAA)含量分析 14
(三)數據統計分析 14
三、田間硫酸銅處理對‘台農17號’鳳梨果實冷藏後果肉物化性狀之影響 14
(一)試驗材料 14
(二)試驗方法 14
1.性狀調查 15
2.元素分析 15
3.多酚氧化酵素(Polyphenol oxidase)活性分析 15
4.總蛋白質含量分析 15
5.游離胺基酸含量分析 15
(三)數據統計分析 15
試驗二、低溫貯藏對‘台農17號’鳳梨果實內部褐化發生之影響 16
一、試驗材料 16
(一)第一次試驗 16
(二)第二次試驗 16
二、果實性狀調查 17
三、元素分析 17
四、酵素分析 17
(一)多酚氧化酵素(Polyphenol oxidase)活性分析 17
(二)鳳梨酵素(bromelain)活性分析 17
五、總蛋白質含量分析 17
六、果肉褐化潛勢分析 18
七、H2O2分佈之分析 18
八、數據統計分析 18
結果 19
試驗一、硫酸銅處理對‘台農17號’鳳梨果實內部褐化發生之影響 19
試驗二、低溫貯藏對‘台農17號’鳳梨果實內部褐化發生之影響 34
討論 81
試驗一、硫酸銅處理對‘台農17號’鳳梨果實內部褐化發生之影響 81
試驗二、低溫貯藏對‘台農17號’鳳梨果實內部褐化發生之影響 82
參考文獻 85
農情報告資源網,http://agrstat.coa.gov.tw。
曾柏瑄。2013。貯藏期間鳳梨果實物化性狀與黑心劣變之相關性。國立中興大學園藝系碩士論文。
蘇俊麟。2008。植物生長調節劑與溫湯處理對鳳梨黑心劣變發生之影響。國立中興大學園藝系碩士論文。
張清勤、官青杉。2001。鳳梨品種改良回顧及未來展望。台灣鳳梨品種改良與病蟲害管理研討會專刊: 1-14。
官青杉、蔡惠文、唐佳惠。2013。台灣鳳梨育種與未來展望。臺灣果樹育種研討會專刊: 49-54。
薛百祺、唐佳惠、官青杉、李堂察。2009。貯藏溫度對‘台農17號’鳳梨果實內部褐化之研究。台灣農業研究58: 273-282。
Adikaram, N. and C. Abayasekara. 2012. Pineapple, p. 143-158. In: Rees, D., G. Farrell and J. Orchard (eds.). Crop Post-Harvest: Science and Technology. Wiley-Blackwell, Oxford, UK.
Babu, B. R., N. K. Rastogi and K. S. M. S. Raghavarao. 2008. Liquid—Liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chemical Engineering Progress 47: 83-89.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Chan, Y. K., G. Coppens d’Eeckenbrugge and G. M. Sanewski. 2002. Breeding and variety improvement, p. 33-55. In: Bartholomew, D. P., K. G. Rohrbach and R. E. Paull (eds.). The pineapple: botany, production and uses. CABI, New York.
Chapman, H. D. and P. F. Pratt. 1961. Methods of analysis for soils, plants and waters. University of California, Riverside. pp.161-174.
Das, J. R., G. B. Santhoor and R. G. Lalitha. 1997. Purification and characterization of polyphenol oxidase from the Kew cultivar of Indian pineapple fruit. Journal of Agricultural and Food Chemistry 45: 2031-2035.
Davies, J., P. Adams and G. W. Winsor 1978. Bud development and flowering of Chrysanthemum morifolium in relation to some enzyme activities. Communications in Soil Science and Plant Analysis 9: 294-264.
Delhaize, E., J.F. Lonergan and J. Webb. 1985. Development of three copper metalloenzymes in clover leaves. Plant Physiology 78: 4-7.
FAO. 2014. http://www.fao.org/faostat.
Flath, R. A. 1980. Pineapple. In: Nagy, S. and P. E. Shaw (eds.). Tropical and ubtropical fruits: composition, properties and uses. AVI Publishing, Westport, Connecticut, pp. 157-183.
Gardner, P. T., T. A. C. White, D. B. McPhail and G. G. Duthie. 2000. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chemistry 68: 471-474.
Ghosh, D. and J. Xu. 2014. Abiotic stress responses in plant roots: a proteomics perspective. Frontiers in Plant Science 5: 6. doi: 10.3389/fpls.2014.00006.
Gill, S. S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930.
Gortner, W. A. and V. L. Singleton. 1965. Chemical and physical development of the pineapple fruit Ⅲ. Nitrogenous and enzyme constituent. Journal of Food Science 30: 24-29.
Hewajulige, I. G. N., R. S. W. Wijeratnam, R. L. C. Wijesundera and M. Abeysekere. 2003. Fruit calcium concentration and chilling injury during low temperature storage of pineapple. Journal of the Science of Food and Agriculture 83: 1451-1454.
Hewajulige, I. G. N., S. W. Wijeratnam and R. L. C. Wijesundera. 2006. Pre-harvest application of calcium to control black heart disorder in Mauritius pineapples during low-temperature storage. Journal of the Science of Food and Agriculture 86: 420-424.
Hu, H., X. Li, C. Dong and W. Chen. 2012. Effects of wax treatment on the physiology and cellular structure of harvested pineapple during cold storage. Journal of Agricultural and Food Chemistry 60: 6613-6619.
Junglee, S., L. Urban, H. Sallanon and F. Lopez-Lauri. 2014. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. American Journal of Analytical Chemistry 5: 730-736.
Kidric, M., J. Kos and J. Sabotic. 2014. Protease and their endogenous inhibitors in the plant response to abiotic stress. Botanica Serbica 38: 139-158.
Ko, H. L., P. R. Campbell, M. P. Jobin-Décor, K. L. Eccleston, M. W. Graham and M. K. Smith. 2006. The introduction of transgenes to control blackheart in pineapple (Ananas comosus L.) cv. Smooth Cayenne by microprojectile bombardment. Euphytica 150: 387-395.
Ko, L., K. Eccleston, T. O’Hare, L. Wong, J. Giles and M. Smith. 2013. Field evaluation of transgenic pineapple (Ananas comosus (L.) Merr.) cv. ‘Smooth Cayenne’ for resistance to blackheart under subtropical conditions. Scientia Horticulturae 159: 103-108.
Lu, X., D. Sun, Y. Li, W. Shi and G. Sun. 2011. Pre- and post-harvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit. Scientia Horticulturae 130: 97-101.
Lyons, J. M., J. K. Raison and P. L.Steponkus. 1979. The plant membrane in response to low temperature: an overview, p. 1-24. In: Lyons, J. M., D. Graham and J. K. Raison (eds.). Low temperature stress in crop plants: the role of membrane. Academic Press, New York.
Marziah, M. and C. H. Lam. 1987. Polyphenol oxidase from soybeans (Glycine max V. Palmetto) and its response to copper and other micronutrients. Journal of Plant Nutrition 10: 2089-2094.
Matoo, A. K., J. E. Baker and H. E. Moline. 1986. Induction by copper ions of ethylene production in Spirodela oligorrhiza: evidence for a pathway independent of 1-aminocyclopropane-1-carboxylic acid. Journal of Plant Physiology 123: 193-202.
Mayer A. M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67: 2318-2331.
McCarthy, J. F., L. F. Green and C. G. King. 1939. The substrate specificity and inhibition characteristics of two copper-protein oxidases. The Journal of Biological Chemistry 128: 455-462.
Miller, L. and J. A. Houghton. 1945. The micro-Kjeldahl determination of the nitrogen content of amino acids and proteins. The Journal of Biological Chemistry 159: 373-383.
Montero, L. M., M. I. Escribano, J. L. De La Plaza and C. Merodio. 1995. Chilling temperature storage induces changes in protein patterns and protease activity in cherimoya fruit. Postharvest Biology and Technology 5: 251-260.
Nukuntornprakit, O. A., K. Chanjirakul, W. G. van Doorn and J. Siriphanich. 2015. Chilling injury in pineapple fruit: Fatty acid composition and antioxidant metabolism. Postharvest Biology and Technology 99: 20-26.
Ouariti, O., N. Boussama, M. Zarrouk, A. Cherif and M. H.Ghorbal. 1997. Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45: 1343-1350.
Paull, R. E. and K. G. Rohrbach. 1985. Symptom development of chilling injury in pineapple fruit. Journal of the American Society for Horticultural Science 110: 100-105.
Phonyiam, O., A. Kongsuwan and S. Setha. 2016. Effect of short-term anoxic treatment on internal browning and antioxidant ability in pineapple cv. Phulae. International Food Research Journal 23: 521-527.
Prasad, T. K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. The Plant Journal 10: 1017-1026.
Pusittigul, I., S. Kondo and J. Siriphanich. 2012. Internal browning of pineapple (Ananas comosus L.) fruit and endogenous concentrations of abscisic acid and gibberellins during low temperature storage. Scientia Horticulturae 146: 45-51.
Queiroz, C., M. L. M. Lopes, E. Fialho and V. L. Valente-Mesquita. 2008. Polyphenol oxidase: Characteristics and mechanisms of browning control. Food Reviews International 24: 361-375.
Raimbault, A. K., P. A. Marie-Alphonsine, J. P. Horry, M. Francois-Haugrin, K. Romuald and A. Soler. 2011. Polyphenol oxidase and peroxidase expression in four pineapple varieties (Ananas comosus L.) after a chilling injury. Journal of Agricultural and Food Chemistry 59: 342-348.
Raimbault, A. K., Y. Zuily-Fodil, A. Soler and M. H. Cruz de Carvalho. 2013a. A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): Cloning, characterization and relation to postharvest chilling stress resistance. Journal of Plant Physiology 170: 1536-1540.
Raimbault, A. K., Y. Zuily-Fodil, A. Soler, P. Mora and M. H. Cruz de Carvalho. 2013b. The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress. Journal of Plant Physiology 170: 1442-1446.
Raison, J. K. and G. R. Orr. 1990. Proposals for a better understanding of the molecular basis of chilling injury, p. 145-164. In: C. J. Wang (eds.). Chilling injury of horticultural crops. CRC Press, Boca Raton.
Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics 67: 10-15.
Saltveit, M. E. 2000. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biology and Technology 21: 61-69.
Sandmann, G. and P. Böger. 1983. Comparison of the bleaching activity of norflurazon and oxyfluorfen. Weed Science 31: 338-341.
Schaffer, M. A. and R. L. Fitcher. 1988. Analysis of mRNAs that Accumulate in response to low temperature identifies a thiol protease gene in tomato. Plant Physiology 87: 431-436.
Shewfelt, R. L. and B. A. del Rosario. 2000. The role of lipid peroxidation in storage disorders of fresh fruits and vegetable. HortScience 35: 575-579.
Singleton, V. L. 1965. Chemical and physical development of the pineapple fruit. Ⅰ. Weight per fruitlet and other physical attributes. Journal of Food Science 30: 98-104.
Singleton, V. L. and W. A. Gortner. 1965. Chemical and physical development of the pineapple fruit. Ⅱ. Carbohydrate and acid consituents. Journal of Food Science 30: 19-23.
Smith, L. G. 1983. Cause and development of blackheart in pineapples. Tropical Agriculture 60: 31-35.
Soares, A. G., L. C. Trugo, N. Botrel and L. F. S. Souza. 2005. Reduction of internal browning of pineapple fruit (Ananas comusus L.) by preharvest soil application of potassium. Postharvest Biology and Technology 35: 201-207.
Stewart, R. J., B. J. B. Sawyer, C. S. Bucheli and S. P. Robinson. 2001. Polyphenol oxidase is induced by chilling and wounding in pineapple. Australian Journal of Plant Physiology 28: 181-191.
Teisson, C. 1972. Studies on internal browning of pineapple. Fruits 27: 603-612.
Thipyapong, P., M. J. Stout and J. Attajarusit. 2007. Functional analysis of polyphenol oxidase by antisense/sense technology. Molecules 12: 1569-1595.
Wang, Z., F. Zhao, X. Zhao, H. Ge, L. Chai, S. Chen, A. Perl and H. Ma. 2012. Proteomic analysis of berry-sizing effect of GA3 on seedless Vitis vinifera L.. Proteomics 12: 86-94.
Weerahewa, D. and N. K. B. Adikaram. 2005a. Some biochemical factors underlying the differential susceptibility of two pineapple cultivars to internal browning disorder. Ceylon Journal of Science (Biological Sciences) 34: 7-20.
Weerahewa, D. and N. K. B. Adikaram. 2005b. Heat-induced tolerance to internal browning of pineapple (Ananas comosus cv. ‘Mauritius’) under cold storage. The Journal of Horticultural Science and Biotechnology 80: 503-509.
Weerahewa, H. L. D. and N. K. B. Adikaram. 2011. Enhanced cold-tolerance in pineapple (Ananas comosus ‘Mauritius’) by combined cold- and heat-shock treatments or intermittent warming. The Journal of Horticultural Science and Biotechnology 86: 13-18.
Whitaker, J. R. and C. Y. Lee. 1995. Recent advances in chemistry of enzymatic browning : An overview, p. 2-7. In: Lee, C. Y. and J. R. Whitaker (eds.). Enzymatic browning and its prevention. American Chemical Society, Washington, DC.
Wu, Z. S., M. Zhang and S. J. Wang. 2011. Effects of high-pressure argon and nitrogen treatments on respiration, browning and antioxidant potential of minimally processed pineapples during shelf life. Journal of the Science of Food and Agriculture 92: 2250-2259.
Zhang, Q., Y. Liu, C. He and S, Zhu. 2015. Postharvest exogenous application of abscisic acid reduces inernal browning in pineapple. Journal of Agricultural and Food Chemistry 63: 5313-5320.
Zhou, Y., J. M. Dahler, S. J. R. Underhill and R. B. H. Wills. 2003a. Enzymes associated with blackheart development in pineapple fruit. Food Chemistry 80: 565-572.
Zhou, Y., T. J. O’Hare, M. Jobin-Décor, S. J. R. Underhill, R. B. H. Wills and M. W. Graham. 2003b. Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart. Plant Biotechnology Journal 1: 463-478.
Zhou, Y., X. Pan, H. Qu and S. J. R. Underhill. 2014a. Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development. The Journal of Membrane Biology 247: 429-439.
Zhou, Y., X. Pan, H. Qu and S. J. R. Underhill. 2014b. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. Journal of Bioenergetics and Biomembranes 46: 59-69.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top