跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張皓棠
研究生(外文):Hao-TangChang
論文名稱:雙向直流CLLLC諧振轉換器之設計與研製
論文名稱(外文):Design and Implementation of Bidirectional DC-DC CLLLC Resonant Converter
指導教授:梁從主
指導教授(外文):Tsorng-Juu Liang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:68
中文關鍵詞:雙向功率傳輸直流-直流電源轉換器零電壓切換零電流切換電池充電器
外文關鍵詞:bidirectional power flowDC-DC power converterszero voltage switchingzero current switchingbattery chargers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1265
  • 評分評分:
  • 下載下載:155
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製一數位控制隔離型雙向諧振轉換器,此轉換器可應用於直流匯流排與電動車電池間之能量傳遞,電路拓樸由全橋架構及CLLLC諧振槽所構成。由於雙向功率傳輸具有對稱電路特性,因此可簡化電路控制。此轉換器亦可達到柔性切換,減少開關切換損失,提升系統效率。本論文首先分析此雙向諧振轉換器之動作原理,推導穩態等效模型及電壓增益曲線,並討論重要參數之設計準則。最後,實作一額定功率為5 kW,直流匯流排電壓400 V、電池電壓200~410 V之實驗雛形,利用數位訊號處理器TMS320F28035進行能量轉換控制,以驗證理論分析。此轉換器操作於充電模式下最高轉換效率為96.9%,操作於放電模式下最高轉換效率為97.2%。
An isolated bidirectional resonant converter with digital control for the energy transferring between the DC bus and the battery of the electric vehicle is designed and implemented in this thesis. The main circuit topology consists of full-bridge structures and a CLLLC resonant tank. Due to the symmetrical circuit characteristics of bidirectional power flow, the circuit control can be simplified. This converter can also achieve soft switching for reducing the switching loss to further improve the system efficiency. In this thesis, the operating principles of the bidirectional resonant converter are analyzed first, and the steady-state equivalent models and the voltage-gain curves are also derived. Moreover, the design criteria of the key parameters are discussed. Finally, a laboratory prototype with rated power 5 kW, DC bus voltage 400 V and battery voltage 200~410 V is implemented with the DSP TMS320F28035 for energy conversion control to validate the theoretical analysis. The maximum conversion efficiency in the charging stage is 96.9%, and the maximum conversion efficiency in the discharging stage is 97.2%.
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Thesis Organization 4
Chapter 2 Introduction of Isolated Bidirectional DC-DC Converters 5
2.1 Bidirectional DC-DC Converters with PWM Control 6
2.1.1 Bidirectional Half-bridge DC-DC Converters 6
2.1.2 Bidirectional Full-bridge DC-DC Converters 8
2.1.3 Bidirectional Hybrid DC-DC Converters 10
2.2 Bidirectional DC-DC Converters with PFM Control 11
2.2.1 Introduction of Conventional Resonant Converters 11
2.2.2 Bidirectional DC-DC Resonant Converters 14
Chapter 3 Analysis of Bidirectional CLLLC Resonant Converter 16
3.1 Introduction of Bidirectional CLLLC Resonant Converter 16
3.2 Operating Principle of Bidirectional CLLLC Resonant Converter 18
3.2.1 Operating Principle in Region 1 19
3.2.2 Operating Principle in Region 2 25
3.3 Analysis of Bidirectional CLLLC Resonant Converter 32
3.3.1 Steady-State Model of Bidirectional Resonant Converter 32
3.3.2 Voltage-Gain Characteristics of Bidirectional Resonant Converter 36
3.3.3 Design Considerations of Bidirectional Resonant Converter 39
Chapter 4 Hardware Implementation and Discussions of Experimental Results 42
4.1 Specifications and Key Components Design 42
4.2 Experimental Results and Discussions 52
4.2.1 Experimental Results and Discussions in Charging Stage 52
4.2.2 Experimental Results and Discussions in Discharging Stage 58
Chapter 5 Conclusions and Future Works 64
5.1 Conclusions 64
5.2 Future Works 65
REFERENCES 66
[1]M. Yilmaz and P. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles, IEEE Trans. on Power Electronics, vol. 28, no. 5, pp. 2151-2169, May 2013.
[2]TEVC-01, “Electric vehicle conductive charging system recommended practice – part 1: Installation, May 2011.
[3]M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces, IEEE Trans. on Power Electronics, vol. 28, no. 12, pp. 5673-5689, Dec. 2013.
[4]X. Wang, C. Jiang, B. Lei, H. Bai, and J. L. Kirtley, Jr., “Power-loss analysis and efficiency maximization of a silicon-carbide MOSFET-based three-phase 10-kW bidirectional EV charger using variable-DC-bus control, IEEE Trans. Power Electronics, vol.4, no.3, pp. 880-892, Sep. 2016.
[5]S. Inoue and H. Akagi, “A bidirectional DC-DC converter for an energy storage system with galvanic isolation, IEEE Trans. on Power Electronics, vol. 22, no. 6, pp. 2299-2306, Dec. 2007.
[6]H. Bai, A. Taylor, W. Guo, G. Szatmari-Voicu, N. Wang, J. Patterson, and J. Kane, Design of an 11 kW power factor correction and 10 kW ZVS DC-DC converter for a high-efficiency battery charger in electric vehicles, IET Power Electron., vol. 5, no. 9, pp. 1714-1722, Nov. 2012.
[7]M.-S. Huang, P.-Y. Yeh, J.-R. Huang, and C.-H. Liao, “Novel bidirectional AC-DC converter for electrical vehicle battery testing, in Proc. IEEE IECON, Nov. 2011, pp. 1480-1485.
[8]S.-J. Jang, T.-W. Lee, W.-C. Lee, and C.-Y. Won, “Bi-directional DC-DC converter for fuel cell generation system, in Proc. IEEE PESC, vol. 6, June 2004, pp. 4722-4728.
[9]B. Yang, “Topology investigation for front end DC/DC power conversion for distributed power system Ph.D. dissertation, Dept. Elect. Eng., Virginia Tech, Blacksburg, VA, Sep. 2003.
[10]D. S. Segaran, “Dynamic modeling and control of dual active bridge bi-directional DC-DC converter for smart grid applications, Ph.D. dissertation, School of Electrical and Computer Engineering (SECE), RMIT Univ., Feb. 2013.
[11]J. Zhang, “Bidirectional DC-DC power converter design optimization, modeling, and control, Ph.D. dissertation, Dept. Elect. Eng., Virginia Tech, Blacksburg, VA, Jan. 2008.
[12]S. Mao, “Isolated bi-directional DC-DC converter with smooth start-up transition, M.S. thesis, Dept. Elect. Eng., Virginia Tech, Blacksburg, VA, May 2015.
[13]H. Li, F. Z. Peng, and J. S. Lawler, “A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices, IEEE Trans. on Industrial Applications, vol. 39, no. 2, pp. 525-535, Mar./Apr. 2003.
[14]S. Park and Y. Song, “An interleaved half-bridge bidirectional DC-DC converter for energy storage system applications, in Proc. IEEE ECCE Asia, May 2011, pp. 2029-2034.
[15]H. Fan and H. Li, “High frequency high efficiency bidirectional DC-DC converter module design for 10 kVA solid state transformer, in Proc. IEEE APEC, Feb. 2010, pp. 210-215.
[16]B. Zhao, Q. Yu, and W. Sun, “Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid, IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4667-4680, Nov. 2012.
[17]K. Wang, F. C. Lee, and J. Lai, “Operation principles of bi-directional full-bridge DC-DC converter with unified soft-switching scheme and soft-starting capability, in Proc. IEEE APEC, Feb. 2000, pp. 111-118.
[18]T.-F. Wu, Y.-C. Chen, J.-G. Yang, and C.-L. Kuo, “Isolated bidirectional full-bridge DC-DC converter with a flyback snubber, IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1915-1922, Jul. 2010.
[19]F. Xue, R. Yu, W. Yu, A. Q. Huang, and Y. Du, “A novel bi-directional DC-DC converter for distributed energy storage device, in Proc. IEEE APEC, Mar. 2015, pp. 1126-1130.
[20]H. F. Xiao, L. Guo, and S. J. Xie, “A new ZVS bidirectional DC-DC converter with phase-shift plus PWM control scheme, in Proc. IEEE APEC, Feb./Mar. 2007, pp. 943-948.
[21]Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of bidirectional DC-DC resonant converter for vehicle-to-grid (V2G) applications, IEEE Trans. Transp. Electrification, vol. 1, no. 3, pp. 232-244, Oct. 2015.
[22]J.-H. Jung, H.-S. Kim, M.-H. Ryu, and J.-W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems, IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, Apr. 2013.
[23]W. Chen, P. Rong, and Z. Lu, “Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss, IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075-3086, Sep. 2010.
[24]Q. Chen, J. Wang, Y. Ji, and S. Liang, “Soft starting strategy of bidirectional LLC resonant DC-DC transformer based on phase-shift control, in Proc. ICIEA, Jun. 2014, pp. 318-322.
[25]T.-T. Wu, “Design and implementation of a bidirectional resonant DC converter, M.S. thesis, Dept. Elect. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Jul. 2010.
[26]H. Huang, “Design an LLC resonant half-bridge power converter, Texas Instruments Power Supply Design Seminar SEM1900, topic 3, TI literature no. SLUP263, 2010.
[27]S. Abdel-Rahman, “Resonant LLC converter: operation and design, Infineon Technology Application Note, AN 2012-09, Sep. 2012.
[28]B. Lu, W. Liu, L. Yan, F. C. Lee, and J. D. van Wyk, “Optimal design methodology for LLC resonant converter, in Proc. IEEE APEC, Jun. 2006, pp. 533-538.
[29]J. Hou, “Design procedure for LLC resonant converter, M.S. thesis, Dept. Elect. Eng., National Taiwan Univ., Taipei, Taiwan, Jun. 2009.
[30]Y. C. Chen, “Design and implementation of LLC resonant converter, M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, Jun. 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊