|
1. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. (1990). Materials Park, OH: ASM International. 2. ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys. (1990). Materials Park: A S M International. 3. Singh, S., Wanderka, N., Murty, B., Glatzel, U. and Banhart, J. (2011). Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia, 59(1), pp.182-190. 4. Hsu, C., Wang, W., Tang, W., Chen, S. and Yeh, J. (2010). Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys. Advanced Engineering Materials, 12(1-2), pp.44-49. 5. Chen, Y., Duval, T., Hung, U., Yeh, J. and Shih, H. (2005). Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science, 47(9), pp.2257-2279. 6. Chen, Y., Hong, U., Shih, H., Yeh, J. and Duval, T. (2005). Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corrosion Science, 47(11), pp.2679-2699. 7. Yang, X., Zhang, Y. and Liaw, P. (2012). Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys. Procedia Engineering, 36, pp.292-298. 8. Senkov, O., Scott, J., Senkova, S., Miracle, D. and Woodward, C. (2011). Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 509(20), pp.6043-6048. 9. Lilensten, L., Couzinié, J., Perrière, L., Bourgon, J., Emery, N. and Guillot, I. (2014). New structure in refractory high-entropy alloys. Materials Letters, 132, pp.123-125. 10. Yeh, J., Chen, S., Lin, S., Gan, J., Chin, T., Shun, T., Tsau, C. and Chang, S. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5), pp.299-303. 11. Cantor, B., Chang, I., Knight, P. and Vincent, A. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375-377, pp.213-218. 12. Ranganathan, S. (2003). Alloyed pleasures: Multimetallic cocktails. CURRENT SCIENCE, 85(10), pp.1404-1406. 13. Yeh, J. (2006). Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 31(6), pp.633-648. 14. Takeuchi, A. and Inoue, A. (2001). Quantitative evaluation of critical cooling rate for metallic glasses. Materials Science and Engineering: A, 304-306, pp.446-451. 15. Miedema, A., de Châtel, P. and de Boer, F. (1980). Cohesion in alloys — fundamentals of a semi-empirical model. Physica B+C, 100(1), pp.1-28. 16. Cahn, R. and Haasen, P. (1996). Physical metallurgy. 4th ed. Amsterdam: North-Holland. 17. Zhang, Y., Zhou, Y., Lin, J., Chen, G. and Liaw, P. (2008). Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10(6), pp.534-538. 18. Yang, X. and Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), pp.233-238. 19. Yeh, J. (2011). 高熵合金的發展. 華岡工程學報, (27), pp.1-18. 20. Gaskell, D. (1995). Introduction to the thermodynamics of materials. 3rd ed. Washington: Taylor & Francis, pp.80-84. 21. Swalin, R. (1972). Thermodynamics of solids. 2nd ed. New York: Wiley, pp.35-41. 22. Seitz, F. and Turnbull, D. (1964). Solid State Physics, 16. Burlington: Elsevier, p.404. 23. Tsai, K., Tsai, M. and Yeh, J. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), pp.4887-4897. 24. Dąbrowa, J., Cieślak, G., Stygar, M., Mroczka, K., Berent, K., Kulik, T. and Danielewski, M. (2017). Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics, 84, pp.52-61. 25. Wu, J., Lin, S., Yeh, J., Chen, S., Huang, Y. and Chen, H. (2006). Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261(5-6), pp.513-519. 26. Yeh, J., Chang, S., Hong, Y., Chen, S. and Lin, S. (2007). Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 103(2007), pp.41–46 27. Murty, B., Yeh, J. and Ranganathan, S. (2014). High-entropy alloys. Oxford, UK: Butterworth-Heinemann. 28. Tong, C., Chen, M., Yeh, J., Lin, S., Chen, S., Shun, T. and Chang, S. (2005). Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36(5), pp.1263-1271. 29. Han, Z., Liu, X., Zhao, S., Shao, Y., Li, J. and Yao, K. (2015). Microstructure, phase stability and mechanical properties of Nb–Ni–Ti–Co–Zr and Nb–Ni–Ti–Co–Zr–Hf high entropy alloys. Progress in Natural Science: Materials International, 25(5), pp.365-369. 30. Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S. (2011). Massachusetts Institute of Technology. 31. Miller, W., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A. and Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1), pp.37-49. 32. Senkov, O., Senkova, S., Woodward, C. and Miracle, D. (2013). Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 61(5), pp.1545-1557. 33. Senkov, O., Senkova, S., Miracle, D. and Woodward, C. (2013). Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 565, pp.51-62. 34. Stepanov, N., Yurchenko, N., Shaysultanov, D., Salishchev, G. and Tikhonovsky, M. (2015). Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Materials Science and Technology, 31(10), pp.1184-1193. 35. A Novel Light High-Entropy Alloy Al20Be20Fe10Si15Ti35. Available online: http://www.science24.com/paper/19071 (accessed on 25 August 2016). 36. Li, R., Gao, J. and Fan, K. (2010). Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Materials Science Forum, 650, pp.265-271. 37. Li, R., Gao, J. and Fan, K. (2011). Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions. Materials Science Forum, 686, pp.235-241. 38. Chen, Y., Tsai, C., Juan, C., Chuang, M., Yeh, J., Chin, T. and Chen, S. (2010). Amorphization of equimolar alloys with HCP elements during mechanical alloying. Journal of Alloys and Compounds, 506(1), pp.210-215. 39. Youssef, K., Zaddach, A., Niu, C., Irving, D. and Koch, C. (2014). A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Materials Research Letters, 3(2), pp.95-99. 40. Tsai, M. and Yeh, J. (2014). High-Entropy Alloys: A Critical Review. Materials Research Letters, 2(3), pp.107-123. 41. Senkov, O., Wilks, G., Scott, J. and Miracle, D. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19(5), pp.698-706. 42. Zhang, Y. and Peng, W. (2012). Microstructural control and properties optimization of high-entropy alloys. Procedia Engineering, 27, pp.1169-1178. 43. Zhang, Y., Zhou, Y., Lin, J., Chen, G. and Liaw, P. (2008). Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10(6), pp.534-538. 44. GUO, S. and LIU, C. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6), pp.433-446. 45. Feng, R., Gao, M., Lee, C., Mathes, M., Zuo, T., Chen, S., Hawk, J., Zhang, Y. and Liaw, P. (2016). Design of Light-Weight High-Entropy Alloys. Entropy, 18(9), p.333. 46. Jin, C. (2004). 熱處理. Tai nan shi: Fu wen, p.71.
|