|
1.Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P: Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 15:135-47, 2014. 2.Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, et al.: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 202:1691-701, 2005. 3.Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al.: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19:107-20, 2012. 4.Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol. 12:991-1045, 1994. 5.Hartl FU: Molecular chaperones in cellular protein folding. Nature. 381:571-9, 1996. 6.Radons J: The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 21:379-404, 2016. 7.Garg AD, Krysko DV, Vandenabeele P, Agostinis P: DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem Photobiol Sci. 10:670-80, 2011. 8.Garg AD, Krysko DV, Vandenabeele P, Agostinis P: Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol Immunother. 61:215-21, 2012. 9.Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, et al.: Classification of current anticancer immunotherapies. Oncotarget. 5:12472-508, 2014. 10.Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M: Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 417:651-66, 2009. 11.Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, et al.: Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 123:321-34, 2005. 12.Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al.: Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 13:54-61, 2007. 13.Wiersma VR, Michalak M, Abdullah TM, Bremer E, Eggleton P: Mechanisms of Translocation of ER Chaperones to the Cell Surface and Immunomodulatory Roles in Cancer and Autoimmunity. Front Oncol. 5:7, 2015. 14.Ulloa L, Messmer D: High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 17:189-201, 2006. 15.Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A: HMGB1: endogenous danger signaling. Mol Med. 14:476-84, 2008. 16.Scaffidi P, Misteli T, Bianchi ME: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 418:191-5, 2002. 17.Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, Nawroth PP, et al.: Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol. 174:7506-15, 2005. 18.Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA: Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 29:21-32, 2008. 19.Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii HJ, Kang R, et al.: Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 4:e966, 2013. 20.Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, et al.: Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 187:1477-85, 1998. 21.Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al.: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 1:112-9, 2005. 22.Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, et al.: Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 4:313-21, 2008. 23.Dondelinger Y, Darding M, Bertrand MJ, Walczak H: Poly-ubiquitination in TNFR1-mediated necroptosis. Cell Mol Life Sci. 73:2165-76, 2016. 24.Wilson NS, Dixit V, Ashkenazi A: Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol. 10:348-55, 2009. 25.Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, et al.: Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 54:133-46, 2014. 26.Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P: RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ. 14:400-10, 2007. 27.Vanlangenakker N, Vanden Berghe T, Vandenabeele P: Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 19:75-86, 2012. 28.Linkermann A, Green DR: Necroptosis. N Engl J Med. 370:455-65, 2014. 29.Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, et al.: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268-79, 2013. 30.Aaes TL, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al.: Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 15:274-87, 2016. 31.Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, et al.: Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology. 5:e1149673, 2016. 32.Osborn SL, Diehl G, Han SJ, Xue L, Kurd N, Hsieh K, et al.: Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc Natl Acad Sci U S A. 107:13034-9, 2010. 33.Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM: Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68:6889-95, 2008. 34.Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A: Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. 16:175-83, 2009. 35.Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al.: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 334:1573-7, 2011. 36.Li Y, Wang LX, Pang P, Cui Z, Aung S, Haley D, et al.: Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin Cancer Res. 17:7047-57, 2011. 37.Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, et al.: Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med. 4:143ra99, 2012. 38.Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P: Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 24:319-33, 2013. 39.Duan D, Zhang B, Yao J, Liu Y, Fang J: Shikonin targets cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Free Radic Biol Med. 70:182-93, 2014. 40.Wada N, Kawano Y, Fujiwara S, Kikukawa Y, Okuno Y, Tasaki M, et al.: Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. Int J Oncol. 46:963-72, 2015. 41.Piao JL, Cui ZG, Furusawa Y, Ahmed K, Rehman MU, Tabuchi Y, et al.: The molecular mechanisms and gene expression profiling for shikonin-induced apoptotic and necroptotic cell death in U937 cells. Chem Biol Interact. 205:119-27, 2013. 42.Wiench B, Eichhorn T, Paulsen M, Efferth T: Shikonin directly targets mitochondria and causes mitochondrial dysfunction in cancer cells. Evid Based Complement Alternat Med. 2012:726025, 2012. 43.Chen HM, Wang PH, Chen SS, Wen CC, Chen YH, Yang WC, et al.: Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol Immunother, 2012. 44.Huang C, Luo Y, Zhao J, Yang F, Zhao H, Fan W, et al.: Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS One. 8:e66326, 2013. 45.Yang H, Zhou P, Huang H, Chen D, Ma N, Cui QC, et al.: Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer. 124:2450-9, 2009. 46.Shi S, Cao H: Shikonin promotes autophagy in BXPC-3 human pancreatic cancer cells through the PI3K/Akt signaling pathway. Oncol Lett. 8:1087-9, 2014. 47.Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, et al.: Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther. 6:1641-9, 2007. 48.Gong K, Zhang Z, Chen Y, Shu HB, Li W: Extracellular signal-regulated kinase, receptor interacting protein, and reactive oxygen species regulate shikonin-induced autophagy in human hepatocellular carcinoma. Eur J Pharmacol. 738:142-52, 2014. 49.Kaur J, Debnath J: Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 16:461-72, 2015. 50.Mizushima N, Komatsu M: Autophagy: renovation of cells and tissues. Cell. 147:728-41, 2011. 51.Li WW, Li J, Bao JK: Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 69:1125-36, 2012. 52.Kaushik S, Cuervo AM: Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22:407-17, 2012. 53.Lamb CA, Yoshimori T, Tooze SA: The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 14:759-74, 2013. 54.Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al.: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 182:685-701, 2008. 55.Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, et al.: Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 141:656-67, 2010. 56.Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC: Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol. 12:747-57, 2010. 57.Mizushima N, Yoshimori T, Ohsumi Y: The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 27:107-32, 2011. 58.Shen HM, Mizushima N: At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci. 39:61-71, 2014. 59.Fader CM, Sanchez DG, Mestre MB, Colombo MI: TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta. 1793:1901-16, 2009. 60.Furuta N, Fujita N, Noda T, Yoshimori T, Amano A: Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell. 21:1001-10, 2010. 61.Chang TK, Shravage BV, Hayes SD, Powers CM, Simin RT, Wade Harper J, et al.: Uba1 functions in Atg7- and Atg3-independent autophagy. Nat Cell Biol. 15:1067-78, 2013. 62.Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, et al.: Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22:58-73, 2015. 63.Liu Y, Levine B: Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 22:367-76, 2015. 64.Berry DL, Baehrecke EH: Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell. 131:1137-48, 2007. 65.Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, et al.: Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A. 103:4952-7, 2006. 66.Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, et al.: Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol. 72:8586-96, 1998. 67.Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al.: Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26:2527-39, 2007. 68.Morselli E, Shen S, Ruckenstuhl C, Bauer MA, Marino G, Galluzzi L, et al.: p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle. 10:2763-9, 2011. 69.Budanov AV, Karin M: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 134:451-60, 2008. 70.Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, et al.: Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27:1016-31, 2013. 71.Marino G, Niso-Santano M, Baehrecke EH, Kroemer G: Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 15:81-94, 2014. 72.Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C: Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem. 282:18573-83, 2007. 73.Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, et al.: Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 9:1142-51, 2007. 74.Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al.: Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25:717-29, 2011. 75.Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, et al.: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25:460-70, 2011. 76.Bray K, Mathew R, Lau A, Kamphorst JJ, Fan J, Chen J, et al.: Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One. 7:e41831, 2012. 77.He MX, He YW: A role for c-FLIP(L) in the regulation of apoptosis, autophagy, and necroptosis in T lymphocytes. Cell Death Differ. 20:188-97, 2013. 78.Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK, et al.: Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest. 120:1310-23, 2010. 79.Basit F, Cristofanon S, Fulda S: Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 20:1161-73, 2013. 80.Steinman RM, Banchereau J: Taking dendritic cells into medicine. Nature. 449:419-26, 2007. 81.Trombetta ES, Mellman I: Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 23:975-1028, 2005. 82.Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 393:478-80, 1998. 83.Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 20:621-67, 2002. 84.Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, et al.: Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 208:1989-2003, 2011. 85.Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al.: Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med. 208:2005-16, 2011. 86.Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T, Zurawski G, et al.: Harnessing human dendritic cell subsets for medicine. Immunol Rev. 234:199-212, 2010. 87.Nabhan C: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:1966-7; author reply 8, 2010. 88.Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN: Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 15:e257-67, 2014. 89.Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG: Dendritic Cell-Based Immunotherapy: State of the Art and Beyond. Clin Cancer Res. 22:1897-906, 2016. 90.Vandenberk L, Belmans J, Van Woensel M, Riva M, Van Gool SW: Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines. Front Immunol. 6:663, 2015. 91.Goldszmid RS, Idoyaga J, Bravo AI, Steinman R, Mordoh J, Wainstok R: Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. J Immunol. 171:5940-7, 2003. 92.Kim HS, Choo YS, Koo T, Bang S, Oh TY, Wen J, et al.: Enhancement of antitumor immunity of dendritic cells pulsed with heat-treated tumor lysate in murine pancreatic cancer. Immunol Lett. 103:142-8, 2006. 93.Vandenberk L, Garg AD, Verschuere T, Koks C, Belmans J, Beullens M, et al.: Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 5:e1083669, 2016. 94.Kotera Y, Shimizu K, Mule JJ: Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res. 61:8105-9, 2001. 95.Garg AD, Martin S, Golab J, Agostinis P: Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ. 21:26-38, 2014. 96.Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, et al.: Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 3:e955691, 2014. 97.Kroemer G, Galluzzi L, Kepp O, Zitvogel L: Immunogenic cell death in cancer therapy. Annu Rev Immunol. 31:51-72, 2013. 98.Yin SY, Wang CY, Yang NS: Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage. Exp Cell Res. 317:2210-21, 2011. 99.Chow KP, Qiu JT, Lee JM, Hsu SL, Yang SC, Wu NN, et al.: Selective reduction of post-selection CD8 thymocyte proliferation in IL-15Ralpha deficient mice. PLoS One. 7:e33152, 2012. 100.Lin TJ, Lin HT, Chang WT, Mitapalli SP, Hsiao PW, Yin SY, et al.: Shikonin-enhanced cell immunogenicity of tumor vaccine is mediated by the differential effects of DAMP components. Mol Cancer. 14:174, 2015. 101.Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, et al.: Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci U S A. 111:7391-6, 2014. 102.Green DR, Ferguson T, Zitvogel L, Kroemer G: Immunogenic and tolerogenic cell death. Nat Rev Immunol. 9:353-63, 2009. 103.Udono H, Srivastava PK: Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol. 152:5398-403, 1994. 104.Mizushima N, Yoshimori T, Levine B: Methods in mammalian autophagy research. Cell. 140:313-26, 2010. 105.Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, et al.: IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol. 187:4835-43, 2011. 106.Ayna G, Krysko DV, Kaczmarek A, Petrovski G, Vandenabeele P, Fesus L: ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS One. 7:e40069, 2012. 107.Kaczmarek A, Vandenabeele P, Krysko DV: Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 38:209-23, 2013. 108.Zhang Q, Kang R, Zeh HJ, 3rd, Lotze MT, Tang D: DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy. 9:451-8, 2013. 109.Rodriguez-Gonzalez A, Lin T, Ikeda AK, Simms-Waldrip T, Fu C, Sakamoto KM: Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res. 68:2557-60, 2008. 110.Bruning A, Juckstock J: Misfolded proteins: from little villains to little helpers in the fight against cancer. Front Oncol. 5:47, 2015. 111.Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al.: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 282:24131-45, 2007. 112.Li Y, Wang LX, Pang P, Twitty C, Fox BA, Aung S, et al.: Cross-presentation of tumor associated antigens through tumor-derived autophagosomes. Autophagy. 5:576-7, 2009. 113.Gamrekelashvili J, Kapanadze T, Han M, Wissing J, Ma C, Jaensch L, et al.: Peptidases released by necrotic cells control CD8+ T cell cross-priming. J Clin Invest. 123:4755-68, 2013. 114.Maeda A, Fadeel B: Mitochondria released by cells undergoing TNF-alpha-induced necroptosis act as danger signals. Cell Death Dis. 5:e1312, 2014. 115.Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV: Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood. 109:4839-45, 2007. 116.Chang CL, Hsu YT, Wu CC, Yang YC, Wang C, Wu TC, et al.: Immune mechanism of the antitumor effects generated by bortezomib. J Immunol. 189:3209-20, 2012. 117.Korbelik M, Sun J, Cecic I: Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 65:1018-26, 2005. 118.Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL: Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity. 8:657-65, 1998. 119.Yang JT, Li ZL, Wu JY, Lu FJ, Chen CH: An oxidative stress mechanism of shikonin in human glioma cells. PLoS One. 9:e94180, 2014. 120.Lee MJ, Kao SH, Hunag JE, Sheu GT, Yeh CW, Hseu YC, et al.: Shikonin time-dependently induced necrosis or apoptosis in gastric cancer cells via generation of reactive oxygen species. Chem Biol Interact. 211:44-53, 2014. 121.Amos SM, Duong CP, Westwood JA, Ritchie DS, Junghans RP, Darcy PK, et al.: Autoimmunity associated with immunotherapy of cancer. Blood. 118:499-509, 2011. 122.Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, Paroli M, et al.: Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J Exp Med. 202:817-28, 2005. 123.Joubert PE, Albert ML: Antigen Cross-Priming of Cell-Associated Proteins is Enhanced by Macroautophagy within the Antigen Donor Cell. Front Immunol. 3:61, 2012. 124.He S, Wang L, Miao L, Wang T, Du F, Zhao L, et al.: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100-11, 2009. 125.Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, et al.: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325:332-6, 2009. 126.Vince JE, Wong WW, Gentle I, Lawlor KE, Allam R, O'Reilly L, et al.: Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity. 36:215-27, 2012. 127.Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D'Cruz AA, et al.: RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun. 6:6282, 2015. 128.Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, et al.: RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells. Science. 350:328-34, 2015. 129.Festjens N, Vanden Berghe T, Vandenabeele P: Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 1757:1371-87, 2006. 130.Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G: Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 11:700-14, 2010. 131.Goodall ML, Fitzwalter BE, Zahedi S, Wu M, Rodriguez D, Mulcahy-Levy JM, et al.: The Autophagy Machinery Controls Cell Death Switching between Apoptosis and Necroptosis. Dev Cell. 37:337-49, 2016. 132.Gallucci S, Lolkema M, Matzinger P: Natural adjuvants: endogenous activators of dendritic cells. Nat Med. 5:1249-55, 1999. 133.Nouri-Shirazi M, Banchereau J, Bell D, Burkeholder S, Kraus ET, Davoust J, et al.: Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J Immunol. 165:3797-803, 2000. 134.Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N: Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 191:423-34, 2000. 135.Farkas T, Daugaard M, Jaattela M: Identification of small molecule inhibitors of phosphatidylinositol 3-kinase and autophagy. J Biol Chem. 286:38904-12, 2011. 136.Wu YT, Tan HL, Huang Q, Ong CN, Shen HM: Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy. 5:824-34, 2009. 137.Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, et al.: ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A. 107:4153-8, 2010. 138.Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, et al.: PARP-1 is involved in autophagy induced by DNA damage. Autophagy. 5:61-74, 2009. 139.Yonekawa T, Gamez G, Kim J, Tan AC, Thorburn J, Gump J, et al.: RIP1 negatively regulates basal autophagic flux through TFEB to control sensitivity to apoptosis. EMBO Rep. 16:700-8, 2015. 140.Green DR: Another face of RIPK1. EMBO Rep. 16:674-5, 2015. 141.Bao L, Haque A, Jackson K, Hazari S, Moroz K, Jetly R, et al.: Increased expression of P-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model. Am J Pathol. 178:838-52, 2011. 142.Zhuang X, Zhang W, Chen Y, Han X, Li J, Zhang Y, et al.: Doxorubicin-enriched, ALDH(br) mouse breast cancer stem cells are treatable to oncolytic herpes simplex virus type 1. BMC Cancer. 12:549, 2012. 143.Steinhart L, Belz K, Fulda S: Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis. 4:e802, 2013. 144.Laukens B, Jennewein C, Schenk B, Vanlangenakker N, Schier A, Cristofanon S, et al.: Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor alpha-induced necroptosis. Neoplasia. 13:971-9, 2011. 145.Thakur R, Trivedi R, Rastogi N, Singh M, Mishra DP: Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci Rep. 5:10194, 2015. 146.Ghochikyan A, Davtyan A, Hovakimyan A, Davtyan H, Poghosyan A, Bagaev A, et al.: Primary 4T1 tumor resection provides critical "window of opportunity" for immunotherapy. Clin Exp Metastasis. 31:185-98, 2014. 147.Leonhartsberger N, Ramoner R, Falkensammer C, Rahm A, Gander H, Holtl L, et al.: Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother. 61:1407-13, 2012. 148.Cheever MA, Higano CS: PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 17:3520-6, 2011. 149.Andersen BM, Ohlfest JR: Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Lett. 325:155-64, 2012. 150.Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, et al.: Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 4:321-7, 1998. 151.Speiser DE, Miranda R, Zakarian A, Bachmann MF, McKall-Faienza K, Odermatt B, et al.: Self antigens expressed by solid tumors Do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J Exp Med. 186:645-53, 1997. 152.Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, et al.: Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med. 198:569-80, 2003.
|