跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韻茹
研究生(外文):Yun-Ju Chen
論文名稱:人類組蛋白甲基轉化酶SMYD3在DNA修復功能上扮演的角色探討
論文名稱(外文):To Investigate the Function of Human Histone Methyltransferase SMYD3 in DNA Repair
指導教授:鄧述諄
口試委員:曾秀如李明學李財坤冀宏源
口試日期:2017-06-07
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:69
中文關鍵詞:SMYD3組蛋白甲基化同源重組DNA修復癌症
外文關鍵詞:SMYD3histone methylationhomologous recombinationDNA repaircancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甲基轉化酶SMYD3高度表現在許多種類的癌症中,SMYD3藉由甲基化組蛋白或是非組蛋白的受質來調控包括染色質重組、訊息傳導和控制細胞週期等動作。由於在癌症細胞中SMYD3有不正常的高度表現,且研究已指出SMYD3過表現會促進癌症細胞增生且連結到癌症預後不良,因此在許多種類的癌症SMYD3中被認為是一個預後指標。為了研究SMYD3的新功能,我利用SMYD3進行ChIP-seq實驗,並將其結果和先前發表的微陣列晶片資料庫做比對,實驗結果顯示一群和DNA損壞反應相關的基因會受到調控。進一步研究指出SMYD3會調控另一個導致癌症的路徑,DNA修復。此調控是藉由促進許多參與在同源重組的基因之表現。缺乏SMYD3的細胞表現出對於DNA損壞壓力的高度敏感,DNA斷裂及染色體重組的程度增加、修復蛋白聚集的情形降低,這些都導致同源重組功能的損害。若是在缺乏SMYD3的細胞中外源性的表現SMYD3則可以彌補這種缺陷。此外,這個對同源重組相關基因的調控是藉由在其啟動子甲基化H3K4。這些實驗結果顯示,SMYD3除了經由已知的機制促進癌症生成,也透過調控同源重組蛋白質貢獻於維持基因體的完整性。
SET and MYND domain containing-3 (SMYD3) is a methyltransferase highly expressed in many types of cancer. SMYD3 methylates various histone and non-histone targets to regulate distinct roles in chromatin remodeling, signal transduction and cell cycle control. SMYD3 is linked to increased cell proliferation and poor prognosis in human cancers. Due to its abnormal expression in tumors, SMYD3 is considered as prognostic markers in various cancers. To explore novel functions of SMYD3, we performed ChIP-seq experiments and compared the results with previously published microarray data. A group of DNA damage response genes were called. Further study showed that SMYD3 modulates another hallmark of cancer, DNA repair, by stimulating transcription of genes involved in multiple steps of homologous recombination (HR). Deficiency of SMYD3 induces DNA-damage hypersensitivity, increases levels of DNA breaks and chromosomal rearrangement, decreases levels of repair foci, and leads to impairment of homologous recombination. The complementation of exogenous SMYD3 is able to restore the defects caused by SMYD3 depletion. Moreover, the regulation of homologous recombination-related genes is via the methylation of H3K4 at the target gene promoters. These data imply that, besides its reported oncogenic abilities, SMYD3 may maintain genome integrity by ensuring expression levels of HR proteins to cope with the high demand of restart of stalled replication forks in cancers.
口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract. iv
Table of Contents. v
Chapter 1. Introduction. 1
SMYD3 and its biological functions. 1
DNA double-strand breaks repair pathways. 2
SMYD3 is involved in homologous recombination. 4
Chapter 2. Results. 5
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) analysis reveals a role of SMYD3 in DNA repair. 5
Microarray data analysis identifies SMYD3-regulated expression of DNA repair machinery. 6
SMYD3 mediates the HR pathway. 8
SMYD3 knockdown downregulates HR gene expressions. 9
SMYD3 controls the expression of HR genes through methylating histone H3K4. 11
Chapter 3. Discussion. 12
Chapter 4. Materials and methods. 15
Cell lines, plasmid construction, and gene knockdown 15
ChIP assay. 15
ChIP-seq assay and data analysis. 16
Data analysis of gene expression microarray. 17
Cell fixation and immunofluorescence assays. 17
Colony formation assay. 18
Nuclear/cytosol fractionation. 18
Western blot analysis. 19
Comet assay. 19
Micronuclei counts. 20
RNA analysis and quantitative real-time polymerase chain reaction (qRT-PCR). 20
HR assay. 21
Plasmid based end-joining assay. 21
Plasmid based MMEJ assay. 22
Statistical analysis. 22
Chapter 5. Figures and Figure Legends. 23
Figure 1. ChIP analysis. 23
Figure 2. SMYD3 may be involved in DNA repair. 25
Figure 3. SMYD3 is required for DNA repair machinery. 28
Figure 4. SMYD3-depleted cells are hypersensitive to IR stress. 29
Figure 5. SMYD3 deficiency increases the ratio of DNA damage after IR treatment. 30
Figure 6. SMYD3 mediates the HR pathway. 33
Figure 7. The knockdown efficiency of each knockdown clones used. 35
Figure 8. Complementation of SMYD3 in shSMYD3 cells is able to recover its HR deficiency. 36
Figure 9. SMYD3 knockdown downregulates HR gene expressions. 38
Figure 10. SMYD3 knockdown downregulates the expression of DNA repair foci. 39
Figure 11. SMYD3 regulates the expression of MDC1 through methylating histone H3K4. 40
Figure 12. SMYD3 activates the expression of EXO1 and RAD54B through methylating histone H3K4. 41
Figure 13. SMYD3 methylates histone and non-histone substrates to regulate different pathways that are important for hallmarks of cancer. 43
Chapter 6. Table. 44
Table 1. Down-regulated genes in shSMYD3/shLuc array data (genes with < 0.5 fold differences) cross-referenced with SMYD3 ChIP-seq data. 44
Table 2. Up-regulated genes in shSMYD3/shLuc array data (genes with < 0.5 fold differences) cross-referenced with SMYD3 ChIP-seq data. 46
Table 3. Down-regulated genes in H2A.Z.1WT/H2A.Z.1K101Q array data (genes with < 0.5 fold differences) cross-referenced with H2A.Z.1K101me2 ChIP-seq data. 48
Table 4. Down-regulated genes in H2A.Z.1WT/H2A.Z.1K101Q array data (genes with < 0.5 fold differences) cross-referenced with H2A.Z.1K101me2 ChIP-seq data. 49
Table 5. GO analysis of down-regulated genes in shSMYD3/shLuc array data (genes with < 0.5 fold differences) cross-referenced with SMYD3 ChIP-seq data. 50
Table 6. Down-regulated DNA damage stimulus response genes in shSMYD3/shLuc array data (genes with < 0.5 fold differences). 51
Table 7. Down-regulated HR genes in shSMYD3/shLuc array data (genes with < 0.5 fold differences). 53
Table 8. Oligo sequences for shRNA-mediated gene knockdown 54
Table 9. Primers used in this study 55
Chapter 7. References. 56
Chapter 8. Appendix. 62
Figures Contributed by Other Authors. 62
Appendix Figure 1. Function of nuclear SMYD3. 63
Appendix Figure 2. SMYD3 location and expression are not modulated by DNA damage insults. 64
Appendix Figure 3. SMYD3 deficiency increases the ratio of micronuclei after IR treatment. 66
Appendix Figure 4. SMYD3 knockdown downregulates HR gene expressions. 67
Appendix Figure 5. SMYD3 deficiency does not affect the formation of 53BP1 foci after IR treatment. 68
Appendix Figure 6. BRCA1 is reduced in SMYD3-depleted cells. 69
1.Rangasamy, D. (2010) Histone variant H2A.Z can serve as a new target for breast cancer therapy. Current medicinal chemistry, 17, 3155-3161.
2.Chandramouli, B., Silvestri, V., Scarno, M., Ottini, L. and Chillemi, G. (2016) Smyd3 open & closed lock mechanism for substrate recruitment: The hinge motion of C-terminal domain inferred from mu-second molecular dynamics simulations. Biochim Biophys Acta, 1860, 1466-1474.
3.Musselman, C.A., Lalonde, M.E., Cote, J. and Kutateladze, T.G. (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol, 19, 1218-1227.
4.Foreman, K.W., Brown, M., Park, F., Emtage, S., Harriss, J., Das, C., Zhu, L., Crew, A., Arnold, L., Shaaban, S. et al. (2011) Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS One, 6, e22290.
5.Liu, Y., Chen, W., Gaudet, J., Cheney, M.D., Roudaia, L., Cierpicki, T., Klet, R.C., Hartman, K., Laue, T.M., Speck, N.A. et al. (2007) Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO''s activity. Cancer Cell, 11, 483-497.
6.Dillon, S.C., Zhang, X., Trievel, R.C. and Cheng, X. (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol, 6, 227.
7.Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R. and Nakamura, Y. (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol, 6, 731-740.
8.Spellmon, N., Holcomb, J., Trescott, L., Sirinupong, N. and Yang, Z. (2015) Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci, 16, 1406-1428.
9.Van Aller, G.S., Reynoird, N., Barbash, O., Huddleston, M., Liu, S., Zmoos, A.F., McDevitt, P., Sinnamon, R., Le, B., Mas, G. et al. (2012) Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics : official journal of the DNA Methylation Society, 7, 340-343.
10.Mazur, P.K., Reynoird, N., Khatri, P., Jansen, P.W., Wilkinson, A.W., Liu, S., Barbash, O., Van Aller, G.S., Huddleston, M., Dhanak, D. et al. (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature, 510, 283-287.
11.Bai, H., Li, Y., Gao, H., Dong, Y., Han, P. and Yu, H. (2016) Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development. Cytotechnology, 68, 849-859.
12.Hamamoto, R., Silva, F.P., Tsuge, M., Nishidate, T., Katagiri, T., Nakamura, Y. and Furukawa, Y. (2006) Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci, 97, 113-118.
13.Giakountis, A., Moulos, P., Sarris, M.E., Hatzis, P. and Talianidis, I. (2017) Smyd3-associated regulatory pathways in cancer. Semin Cancer Biol, 42, 70-80.
14.Martin, C. and Zhang, Y. (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol, 6, 838-849.
15.Tsai, C.H., Chen, Y.J., Yu, C.J., Tzeng, S.R., Wu, I.C., Kuo, W.H., Lin, M.C., Chan, N.L., Wu, K.J. and Teng, S.C. (2016) SMYD3-Mediated H2A.Z.1 Methylation Promotes Cell Cycle and Cancer Proliferation. Cancer Res, 76, 6043-6053.
16.Cock-Rada, A.M., Medjkane, S., Janski, N., Yousfi, N., Perichon, M., Chaussepied, M., Chluba, J., Langsley, G. and Weitzman, J.B. (2012) SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res, 72, 810-820.
17.Liu, C., Fang, X., Ge, Z., Jalink, M., Kyo, S., Bjorkholm, M., Gruber, A., Sjoberg, J. and Xu, D. (2007) The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res, 67, 2626-2631.
18.Kunizaki, M., Hamamoto, R., Silva, F.P., Yamaguchi, K., Nagayasu, T., Shibuya, M., Nakamura, Y. and Furukawa, Y. (2007) The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3. Cancer Res, 67, 10759-10765.
19.Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R. and Nakamura, Y. (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nature cell biology, 6, 731-740.
20.Proserpio, V., Fittipaldi, R., Ryall, J.G., Sartorelli, V. and Caretti, G. (2013) The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev, 27, 1299-1312.
21.Lee, S.J. (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol, 20, 61-86.
22.Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674.
23.Figueroa-Gonzalez, G. and Perez-Plasencia, C. (2017) Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett, 13, 3982-3988.
24.Symington, L.S. and Gautier, J. (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet, 45, 247-271.
25.Sartori, A.A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., Baer, R., Lukas, J. and Jackson, S.P. (2007) Human CtIP promotes DNA end resection. Nature, 450, 509-514.
26.Tran, P.T., Erdeniz, N., Symington, L.S. and Liskay, R.M. (2004) EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst), 3, 1549-1559.
27.Wang, A.Y., Aristizabal, M.J., Ryan, C., Krogan, N.J. and Kobor, M.S. (2011) Key Functional Regions in the Histone Variant H2A.Z C-Terminal Docking Domain. Mol Cell Biol, 31, 3871-3884.
28.Thorslund, T., McIlwraith, M.J., Compton, S.A., Lekomtsev, S., Petronczki, M., Griffith, J.D. and West, S.C. (2010) The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol, 17, 1263-1265.
29.Tanaka, K., Kagawa, W., Kinebuchi, T., Kurumizaka, H. and Miyagawa, K. (2002) Human Rad54B is a double-stranded DNA-dependent ATPase and has biochemical properties different from its structural homolog in yeast, Tid1/Rdh54. Nucleic acids research, 30, 1346-1353.
30.Tanaka, K., Hiramoto, T., Fukuda, T. and Miyagawa, K. (2000) A novel human rad54 homologue, Rad54B, associates with Rad51. The Journal of biological chemistry, 275, 26316-26321.
31.Davis, A.J. and Chen, D.J. (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res, 2, 130-143.
32.Chiruvella, K.K., Liang, Z. and Wilson, T.E. (2013) Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol, 5, a012757.
33.Sfeir, A. and Symington, L.S. (2015) Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem Sci, 40, 701-714.
34.Price, B.D. and D''Andrea, A.D. (2013) Chromatin remodeling at DNA double-strand breaks. Cell, 152, 1344-1354.
35.Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. and Bonner, W.M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. The Journal of biological chemistry, 273, 5858-5868.
36.Paull, T.T., Rogakou, E.P., Yamazaki, V., Kirchgessner, C.U., Gellert, M. and Bonner, W.M. (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10, 886-895.
37.Mailand, N., Bekker-Jensen, S., Faustrup, H., Melander, F., Bartek, J., Lukas, C. and Lukas, J. (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell, 131, 887-900.
38.Mattiroli, F., Vissers, J.H., van Dijk, W.J., Ikpa, P., Citterio, E., Vermeulen, W., Marteijn, J.A. and Sixma, T.K. (2012) RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell, 150, 1182-1195.
39.Wang, B. and Elledge, S.J. (2007) Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A, 104, 20759-20763.
40.Kolas, N.K., Chapman, J.R., Nakada, S., Ylanko, J., Chahwan, R., Sweeney, F.D., Panier, S., Mendez, M., Wildenhain, J., Thomson, T.M. et al. (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science, 318, 1637-1640.
41.Huen, M.S., Grant, R., Manke, I., Minn, K., Yu, X., Yaffe, M.B. and Chen, J. (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 131, 901-914.
42.Smeenk, G. and van Attikum, H. (2013) The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem, 82, 55-80.
43.House, N.C., Koch, M.R. and Freudenreich, C.H. (2014) Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet, 5, 296.
44.Abu-Farha, M., Lanouette, S., Elisma, F., Tremblay, V., Butson, J., Figeys, D. and Couture, J.F. (2011) Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Biol, 3, 301-308.
45.Sarris, M.E., Moulos, P., Haroniti, A., Giakountis, A. and Talianidis, I. (2016) Smyd3 Is a Transcriptional Potentiator of Multiple Cancer-Promoting Genes and Required for Liver and Colon Cancer Development. Cancer Cell, 29, 354-366.
46.Zhang, C.Z., Spektor, A., Cornils, H., Francis, J.M., Jackson, E.K., Liu, S., Meyerson, M. and Pellman, D. (2015) Chromothripsis from DNA damage in micronuclei. Nature, 522, 179-184.
47.Alvarez-Quilon, A., Serrano-Benitez, A., Lieberman, J.A., Quintero, C., Sanchez-Gutierrez, D., Escudero, L.M. and Cortes-Ledesma, F. (2014) ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat Commun, 5, 3347.
48.Sulli, G., Di Micco, R. and di Fagagna, F.d.A. (2012) Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer, 12, 709-720.
49.Stucki, M. and Jackson, S.P. (2004) MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst), 3, 953-957.
50.Minter-Dykhouse, K., Ward, I., Huen, M.S., Chen, J. and Lou, Z. (2008) Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis. J Cell Biol, 181, 727-735.
51.Zhenkun Lou, Claudia Christiano Silva Chini, Katherine Minter-Dykhouse and Chen, J. (2003) Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. The Journal of biological chemistry, 278, 13599-13602.
52.Wilson, K.A. and Stern, D.F. (2008) NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway. Cell cycle, 7, 3584-3594.
53.Kolas NK, Chapman JR, Nakada S, Y.J., Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L et al. (2007) Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase. Science, 318(5856), 1637-1640.
54.Shi, W., Ma, Z., Willers, H., Akhtar, K., Scott, S.P., Zhang, J., Powell, S. and Zhang, J. (2008) Disassembly of MDC1 foci is controlled by ubiquitin-proteasome-dependent degradation. The Journal of biological chemistry, 283, 31608-31616.
55.Lou, Z., Chini, C.C., Minter-Dykhouse, K. and Chen, J. (2003) Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J Biol Chem, 278, 13599-13602.
56.Choudhury, A.D., Xu, H. and Baer, R. (2004) Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression. The Journal of biological chemistry, 279, 33909-33918.
57.Phatnani, H.P. and Greenleaf, A.L. (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev, 20, 2922-2936.
58.Lee, T.Y., Chang, W.C., Hsu, J.B., Chang, T.H. and Shien, D.M. (2012) GPMiner: an integrated system for mining combinatorial cis-regulatory elements in mammalian gene group. BMC Genomics, 13 Suppl 1, S3.
59.Cock-Rada, A.M., Medjkane, S., Janski, N., Yousfi, N., Perichon, M., Chaussepied, M., Chluba, J., Langsley, G. and Weitzman, J.B. (2012) SMYD3 Promotes Cancer Invasion by Epigenetic Upregulation of the Metalloproteinase MMP-9. Cancer Research, 72, 810-820.
60.Zou, J.N., Wang, S.Z., Yang, J.S., Luo, X.G., Xie, J.H. and Xi, T. (2009) Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF. Cancer letters, 280, 78-85.
61.Karanam, K., Kafri, R., Loewer, A. and Lahav, G. (2012) Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell, 47, 320-329.
62.Helleday, T. (2010) Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis, 31, 955-960.
63.Ren, T.N., Wang, J.S., He, Y.M., Xu, C.L., Wang, S.Z. and Xi, T. (2011) Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells. Med Oncol, 28 Suppl 1, S91-98.
64.Liu, C., Wang, C., Wang, K., Liu, L., Shen, Q., Yan, K., Sun, X., Chen, J., Liu, J., Ren, H. et al. (2013) SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription. J Natl Cancer Inst, 105, 1719-1728.
65.Vieira, F.Q., Costa-Pinheiro, P., Almeida-Rios, D., Graca, I., Monteiro-Reis, S., Simoes-Sousa, S., Carneiro, I., Sousa, E.J., Godinho, M.I., Baltazar, F. et al. (2015) SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3. Oncotarget, 6, 13644-13657.
66.Piao, L., Kang, D., Suzuki, T., Masuda, A., Dohmae, N., Nakamura, Y. and Hamamoto, R. (2014) The histone methyltransferase SMYD2 methylates PARP1 and promotes poly(ADP-ribosyl)ation activity in cancer cells. Neoplasia, 16, 257-264, 264 e252.
67.Jha, D.K. and Strahl, B.D. (2014) An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun, 5, 3965.
68.Pfister, S.X., Ahrabi, S., Zalmas, L.P., Sarkar, S., Aymard, F., Bachrati, C.Z., Helleday, T., Legube, G., La Thangue, N.B., Porter, A.C. et al. (2014) SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep, 7, 2006-2018.
69.Aymard, F., Bugler, B., Schmidt, C.K., Guillou, E., Caron, P., Briois, S., Iacovoni, J.S., Daburon, V., Miller, K.M., Jackson, S.P. et al. (2014) Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol, 21, 366-374.
70.Kim, J.M., Kim, K., Schmidt, T., Punj, V., Tucker, H., Rice, J.C., Ulmer, T.S. and An, W. (2015) Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic acids research, 43, 8868-8883.
71.Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A. and Weinberg, R.A. (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet, 40, 499-507.
72.Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589-595.
73.Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10, R25.
74.Zhu, L.J., Gazin, C., Lawson, N.D., Pages, H., Lin, S.M., Lapointe, D.S. and Green, M.R. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics, 11, 237.
75.Huang da, W., Sherman, B.T. and Lempicki, R.A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37, 1-13.
76.Huang da, W., Sherman, B.T. and Lempicki, R.A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4, 44-57.
77.Olive, P.L. and Banath, J.P. (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc, 1, 23-29.
78.Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. and Leunissen, J.A. (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res, 35, W71-74.
79.Pierce, A.J., Johnson, R.D., Thompson, L.H. and Jasin, M. (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev, 13, 2633-2638.
80.Tseng, S.F., Chang, C.Y., Wu, K.J. and Teng, S.C. (2005) Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1. J Biol Chem, 280, 39594-39600.
81.Kostyrko, K. and Mermod, N. (2016) Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms. Nucleic Acids Res, 44, e56.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊