|
1.Rangasamy, D. (2010) Histone variant H2A.Z can serve as a new target for breast cancer therapy. Current medicinal chemistry, 17, 3155-3161. 2.Chandramouli, B., Silvestri, V., Scarno, M., Ottini, L. and Chillemi, G. (2016) Smyd3 open & closed lock mechanism for substrate recruitment: The hinge motion of C-terminal domain inferred from mu-second molecular dynamics simulations. Biochim Biophys Acta, 1860, 1466-1474. 3.Musselman, C.A., Lalonde, M.E., Cote, J. and Kutateladze, T.G. (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol, 19, 1218-1227. 4.Foreman, K.W., Brown, M., Park, F., Emtage, S., Harriss, J., Das, C., Zhu, L., Crew, A., Arnold, L., Shaaban, S. et al. (2011) Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS One, 6, e22290. 5.Liu, Y., Chen, W., Gaudet, J., Cheney, M.D., Roudaia, L., Cierpicki, T., Klet, R.C., Hartman, K., Laue, T.M., Speck, N.A. et al. (2007) Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO''s activity. Cancer Cell, 11, 483-497. 6.Dillon, S.C., Zhang, X., Trievel, R.C. and Cheng, X. (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol, 6, 227. 7.Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R. and Nakamura, Y. (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol, 6, 731-740. 8.Spellmon, N., Holcomb, J., Trescott, L., Sirinupong, N. and Yang, Z. (2015) Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci, 16, 1406-1428. 9.Van Aller, G.S., Reynoird, N., Barbash, O., Huddleston, M., Liu, S., Zmoos, A.F., McDevitt, P., Sinnamon, R., Le, B., Mas, G. et al. (2012) Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics : official journal of the DNA Methylation Society, 7, 340-343. 10.Mazur, P.K., Reynoird, N., Khatri, P., Jansen, P.W., Wilkinson, A.W., Liu, S., Barbash, O., Van Aller, G.S., Huddleston, M., Dhanak, D. et al. (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature, 510, 283-287. 11.Bai, H., Li, Y., Gao, H., Dong, Y., Han, P. and Yu, H. (2016) Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development. Cytotechnology, 68, 849-859. 12.Hamamoto, R., Silva, F.P., Tsuge, M., Nishidate, T., Katagiri, T., Nakamura, Y. and Furukawa, Y. (2006) Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci, 97, 113-118. 13.Giakountis, A., Moulos, P., Sarris, M.E., Hatzis, P. and Talianidis, I. (2017) Smyd3-associated regulatory pathways in cancer. Semin Cancer Biol, 42, 70-80. 14.Martin, C. and Zhang, Y. (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol, 6, 838-849. 15.Tsai, C.H., Chen, Y.J., Yu, C.J., Tzeng, S.R., Wu, I.C., Kuo, W.H., Lin, M.C., Chan, N.L., Wu, K.J. and Teng, S.C. (2016) SMYD3-Mediated H2A.Z.1 Methylation Promotes Cell Cycle and Cancer Proliferation. Cancer Res, 76, 6043-6053. 16.Cock-Rada, A.M., Medjkane, S., Janski, N., Yousfi, N., Perichon, M., Chaussepied, M., Chluba, J., Langsley, G. and Weitzman, J.B. (2012) SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res, 72, 810-820. 17.Liu, C., Fang, X., Ge, Z., Jalink, M., Kyo, S., Bjorkholm, M., Gruber, A., Sjoberg, J. and Xu, D. (2007) The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res, 67, 2626-2631. 18.Kunizaki, M., Hamamoto, R., Silva, F.P., Yamaguchi, K., Nagayasu, T., Shibuya, M., Nakamura, Y. and Furukawa, Y. (2007) The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3. Cancer Res, 67, 10759-10765. 19.Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R. and Nakamura, Y. (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nature cell biology, 6, 731-740. 20.Proserpio, V., Fittipaldi, R., Ryall, J.G., Sartorelli, V. and Caretti, G. (2013) The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev, 27, 1299-1312. 21.Lee, S.J. (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol, 20, 61-86. 22.Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674. 23.Figueroa-Gonzalez, G. and Perez-Plasencia, C. (2017) Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett, 13, 3982-3988. 24.Symington, L.S. and Gautier, J. (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet, 45, 247-271. 25.Sartori, A.A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., Baer, R., Lukas, J. and Jackson, S.P. (2007) Human CtIP promotes DNA end resection. Nature, 450, 509-514. 26.Tran, P.T., Erdeniz, N., Symington, L.S. and Liskay, R.M. (2004) EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst), 3, 1549-1559. 27.Wang, A.Y., Aristizabal, M.J., Ryan, C., Krogan, N.J. and Kobor, M.S. (2011) Key Functional Regions in the Histone Variant H2A.Z C-Terminal Docking Domain. Mol Cell Biol, 31, 3871-3884. 28.Thorslund, T., McIlwraith, M.J., Compton, S.A., Lekomtsev, S., Petronczki, M., Griffith, J.D. and West, S.C. (2010) The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol, 17, 1263-1265. 29.Tanaka, K., Kagawa, W., Kinebuchi, T., Kurumizaka, H. and Miyagawa, K. (2002) Human Rad54B is a double-stranded DNA-dependent ATPase and has biochemical properties different from its structural homolog in yeast, Tid1/Rdh54. Nucleic acids research, 30, 1346-1353. 30.Tanaka, K., Hiramoto, T., Fukuda, T. and Miyagawa, K. (2000) A novel human rad54 homologue, Rad54B, associates with Rad51. The Journal of biological chemistry, 275, 26316-26321. 31.Davis, A.J. and Chen, D.J. (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res, 2, 130-143. 32.Chiruvella, K.K., Liang, Z. and Wilson, T.E. (2013) Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol, 5, a012757. 33.Sfeir, A. and Symington, L.S. (2015) Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem Sci, 40, 701-714. 34.Price, B.D. and D''Andrea, A.D. (2013) Chromatin remodeling at DNA double-strand breaks. Cell, 152, 1344-1354. 35.Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. and Bonner, W.M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. The Journal of biological chemistry, 273, 5858-5868. 36.Paull, T.T., Rogakou, E.P., Yamazaki, V., Kirchgessner, C.U., Gellert, M. and Bonner, W.M. (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10, 886-895. 37.Mailand, N., Bekker-Jensen, S., Faustrup, H., Melander, F., Bartek, J., Lukas, C. and Lukas, J. (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell, 131, 887-900. 38.Mattiroli, F., Vissers, J.H., van Dijk, W.J., Ikpa, P., Citterio, E., Vermeulen, W., Marteijn, J.A. and Sixma, T.K. (2012) RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell, 150, 1182-1195. 39.Wang, B. and Elledge, S.J. (2007) Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A, 104, 20759-20763. 40.Kolas, N.K., Chapman, J.R., Nakada, S., Ylanko, J., Chahwan, R., Sweeney, F.D., Panier, S., Mendez, M., Wildenhain, J., Thomson, T.M. et al. (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science, 318, 1637-1640. 41.Huen, M.S., Grant, R., Manke, I., Minn, K., Yu, X., Yaffe, M.B. and Chen, J. (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 131, 901-914. 42.Smeenk, G. and van Attikum, H. (2013) The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem, 82, 55-80. 43.House, N.C., Koch, M.R. and Freudenreich, C.H. (2014) Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet, 5, 296. 44.Abu-Farha, M., Lanouette, S., Elisma, F., Tremblay, V., Butson, J., Figeys, D. and Couture, J.F. (2011) Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Biol, 3, 301-308. 45.Sarris, M.E., Moulos, P., Haroniti, A., Giakountis, A. and Talianidis, I. (2016) Smyd3 Is a Transcriptional Potentiator of Multiple Cancer-Promoting Genes and Required for Liver and Colon Cancer Development. Cancer Cell, 29, 354-366. 46.Zhang, C.Z., Spektor, A., Cornils, H., Francis, J.M., Jackson, E.K., Liu, S., Meyerson, M. and Pellman, D. (2015) Chromothripsis from DNA damage in micronuclei. Nature, 522, 179-184. 47.Alvarez-Quilon, A., Serrano-Benitez, A., Lieberman, J.A., Quintero, C., Sanchez-Gutierrez, D., Escudero, L.M. and Cortes-Ledesma, F. (2014) ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat Commun, 5, 3347. 48.Sulli, G., Di Micco, R. and di Fagagna, F.d.A. (2012) Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer, 12, 709-720. 49.Stucki, M. and Jackson, S.P. (2004) MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst), 3, 953-957. 50.Minter-Dykhouse, K., Ward, I., Huen, M.S., Chen, J. and Lou, Z. (2008) Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis. J Cell Biol, 181, 727-735. 51.Zhenkun Lou, Claudia Christiano Silva Chini, Katherine Minter-Dykhouse and Chen, J. (2003) Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. The Journal of biological chemistry, 278, 13599-13602. 52.Wilson, K.A. and Stern, D.F. (2008) NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway. Cell cycle, 7, 3584-3594. 53.Kolas NK, Chapman JR, Nakada S, Y.J., Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L et al. (2007) Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase. Science, 318(5856), 1637-1640. 54.Shi, W., Ma, Z., Willers, H., Akhtar, K., Scott, S.P., Zhang, J., Powell, S. and Zhang, J. (2008) Disassembly of MDC1 foci is controlled by ubiquitin-proteasome-dependent degradation. The Journal of biological chemistry, 283, 31608-31616. 55.Lou, Z., Chini, C.C., Minter-Dykhouse, K. and Chen, J. (2003) Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J Biol Chem, 278, 13599-13602. 56.Choudhury, A.D., Xu, H. and Baer, R. (2004) Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression. The Journal of biological chemistry, 279, 33909-33918. 57.Phatnani, H.P. and Greenleaf, A.L. (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev, 20, 2922-2936. 58.Lee, T.Y., Chang, W.C., Hsu, J.B., Chang, T.H. and Shien, D.M. (2012) GPMiner: an integrated system for mining combinatorial cis-regulatory elements in mammalian gene group. BMC Genomics, 13 Suppl 1, S3. 59.Cock-Rada, A.M., Medjkane, S., Janski, N., Yousfi, N., Perichon, M., Chaussepied, M., Chluba, J., Langsley, G. and Weitzman, J.B. (2012) SMYD3 Promotes Cancer Invasion by Epigenetic Upregulation of the Metalloproteinase MMP-9. Cancer Research, 72, 810-820. 60.Zou, J.N., Wang, S.Z., Yang, J.S., Luo, X.G., Xie, J.H. and Xi, T. (2009) Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF. Cancer letters, 280, 78-85. 61.Karanam, K., Kafri, R., Loewer, A. and Lahav, G. (2012) Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell, 47, 320-329. 62.Helleday, T. (2010) Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis, 31, 955-960. 63.Ren, T.N., Wang, J.S., He, Y.M., Xu, C.L., Wang, S.Z. and Xi, T. (2011) Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells. Med Oncol, 28 Suppl 1, S91-98. 64.Liu, C., Wang, C., Wang, K., Liu, L., Shen, Q., Yan, K., Sun, X., Chen, J., Liu, J., Ren, H. et al. (2013) SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription. J Natl Cancer Inst, 105, 1719-1728. 65.Vieira, F.Q., Costa-Pinheiro, P., Almeida-Rios, D., Graca, I., Monteiro-Reis, S., Simoes-Sousa, S., Carneiro, I., Sousa, E.J., Godinho, M.I., Baltazar, F. et al. (2015) SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3. Oncotarget, 6, 13644-13657. 66.Piao, L., Kang, D., Suzuki, T., Masuda, A., Dohmae, N., Nakamura, Y. and Hamamoto, R. (2014) The histone methyltransferase SMYD2 methylates PARP1 and promotes poly(ADP-ribosyl)ation activity in cancer cells. Neoplasia, 16, 257-264, 264 e252. 67.Jha, D.K. and Strahl, B.D. (2014) An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun, 5, 3965. 68.Pfister, S.X., Ahrabi, S., Zalmas, L.P., Sarkar, S., Aymard, F., Bachrati, C.Z., Helleday, T., Legube, G., La Thangue, N.B., Porter, A.C. et al. (2014) SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep, 7, 2006-2018. 69.Aymard, F., Bugler, B., Schmidt, C.K., Guillou, E., Caron, P., Briois, S., Iacovoni, J.S., Daburon, V., Miller, K.M., Jackson, S.P. et al. (2014) Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol, 21, 366-374. 70.Kim, J.M., Kim, K., Schmidt, T., Punj, V., Tucker, H., Rice, J.C., Ulmer, T.S. and An, W. (2015) Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic acids research, 43, 8868-8883. 71.Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A. and Weinberg, R.A. (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet, 40, 499-507. 72.Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589-595. 73.Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10, R25. 74.Zhu, L.J., Gazin, C., Lawson, N.D., Pages, H., Lin, S.M., Lapointe, D.S. and Green, M.R. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics, 11, 237. 75.Huang da, W., Sherman, B.T. and Lempicki, R.A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37, 1-13. 76.Huang da, W., Sherman, B.T. and Lempicki, R.A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4, 44-57. 77.Olive, P.L. and Banath, J.P. (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc, 1, 23-29. 78.Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. and Leunissen, J.A. (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res, 35, W71-74. 79.Pierce, A.J., Johnson, R.D., Thompson, L.H. and Jasin, M. (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev, 13, 2633-2638. 80.Tseng, S.F., Chang, C.Y., Wu, K.J. and Teng, S.C. (2005) Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1. J Biol Chem, 280, 39594-39600. 81.Kostyrko, K. and Mermod, N. (2016) Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms. Nucleic Acids Res, 44, e56.
|