跳到主要內容

臺灣博碩士論文加值系統

(44.192.114.32) 您好!臺灣時間:2022/07/07 04:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白書齊
研究生(外文):Shu-Chi Pai
論文名稱:有無聲音回饋之音樂演奏時序同步
論文名稱(外文):Temporal synchronization with and without auditory feedback during music playing
指導教授:林發暄
口試委員:蔡振家郭文瑞鍾孝文
口試日期:2016-12-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:35
中文關鍵詞:聽覺-運動交互作用音樂演奏多音源協作功能性磁振造影
外文關鍵詞:audio-motor interactionmusic playingmultiple auditory sources coordinationfMRI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
音樂演奏是普遍且嚴謹費力的人類行為,在世界各地的社會皆存在。過去的研究已經了解當只有來自樂器之單一音源時的音樂演奏大腦活化。然而,多個音源的時序同步對於樂團演奏是必要的,目前卻仍缺少理解。本研究以功能性磁振造影 (functional magnetic imaging, fMRI) 搭配 MR 相容的鋼琴鍵盤,比較音樂演奏時有無兩種音源的情境,兩種音源分別是來自鋼琴的聲音回饋以及節拍器的外部時間導引,本研究旨在理解音樂演奏時,涉及多個音源時序同步的大腦區域。
在本研究中,17位業餘鋼琴家在磁振造影儀器中以四種不同的聽覺情境彈奏相同的旋律,四種聲音情境分別包含:完全沒有聲音刺激 (None)、僅有鋼琴聲音回饋的單一音源 (P)、來自節拍器的外部導引之單一音源 (M)以及包含鋼琴與節拍器兩種音源 (MP)。試驗過程中的鋼琴彈奏按鍵與時間間隔會被記錄下來。若出現不準確的彈奏速度與錯誤的音高,該試驗將被排除不列入分析。
基於問卷分析的結果,不同聽覺情境之間的困難度與彈奏專注程度並無明顯差距。當僅有單一音源進行音樂演奏時,顳上迴(STG)、運動前區(PMA)、輔助運動區(SMA)以及小腦等區域被觀察到活化。相較於單一音源的音樂演奏,功能性磁振造影的比對結果顯示,進行兩個音源的音樂演奏時 (MP),有較高的血氧濃度相依對比訊號出現在兩側的顳葉顳上迴(STG)、布羅德曼(Brodmann Area, BA) 40區、43區和右側布羅德曼38區,說明了與多個音源之音樂演奏時序同步相關的神經訊號處理模式。
Playing music is a common and demanding human behavior present in all societies around the world. Previous studies have demonstrated brain activation patterns during musical playing with one auditory source from the instrument. However, the temporal synchronization requiring multiple auditory sources coordination during musical playing is essential for musical ensemble performances but less understood. In the present study, we used functional magnetic resonance imaging (fMRI) with an MR-compatible piano keyboard to reveal brain regions involved in the temporal synchronization requiring coordination of multiple auditory sources during musical playing by comparing conditions of musical playing with and without two auditory sources which were the auditory feedback of the piano and the external timing reference from a metronome.
In the present study, 17 amateur pianists were asked to play the same melody under four different auditory conditions in MRI, including playing without any auditory stimuli (None), with one auditory input of the auditory feedback from the piano (P) or of an external timing reference from a metronome (M), and with both (MP). Piano performances including which keys were pressed and the timing of them were recorded. Trials with unacceptable accuracy and inaccurate notes were excluded from analysis.
Based on the questionnaire, the level of difficulty and concentration required in each condition did not vary a lot. STG, PMA, SMA, and cerebellum were involved during musical playing with one auditory source (M, P). Compared to musical playing with one auditory source, functional MRI contrasts showed blood-oxygen-level dependent (BOLD) signal increase in bilateral STG, BA 40, 43 and right BA 38 during piano playing with two sources of auditory inputs (MP), which indicates a neuronal processing pattern relating to the coordination of multiple auditory sources synchronization during music playing.
口試委員會審定書 …...…………………………………..……………….… I
謝辭 ………………………………………….………………………………………………….. II
摘要 …………………………………………………………………………………………….. III
Abstract ………………………………………………..………………………………………… IV
Contents …………………………………………………………………………………..….. V
List of Figures ………………………………..……………………………..…… VII
1. Introduction
1-1 Background and Problem Statement ………………… 1
1-2 Objectives of Study ………………………………………………… 4
2. Method
2-1 Materials
2-1-1 Subjects ……………………………………………………………………………. 8
2-1-2 Materials …………………………………………………………………………. 8
2-1-3 Experiment Paradigm ………………………………………………. 9
2-1-4 MRI data acquisition ……………………………………………. 10
2-1-5 MR-compatible piano ………………………………………………. 11
2-2 Data analysis
2-2-1 Preprocessing ………………………………………………………………. 14
2-2-2 Data analysis ………………………………………………………………. 14
3. Results
3-1 Questionnaire and Behavioral results …. 15
3-2 fMRI results ………………………………………………………….….. 17
4. Discussion
4-1 Behavioral and questionnaire analysis ……. 21
4-2 Brain areas involved during musical playing .. 22
4-3 Musical playing with multiple sources of auditory inputs …… 25
5. Conclusion ………………………………………………………………………….…….. 28
References …………………………………………………………………………………..……. 29
Appendix Questionnaires ……………………………………………………………………….. 35
Adams, J. A. (1968). "RESPONSE FEEDBACK AND LEARNING." Psychological Bulletin 70(6P1): 486-&.
Bangert, M., T. Peschel, G. Schlaug, M. Rotte, D. Drescher, H. Hinrichs, H. J. Heinze and E. Altenmuller (2006). "Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction." Neuroimage 30(3): 917-926.
Bastian, A. J. (2006). "Learning to predict the future: the cerebellum adapts feedforward movement control." Current Opinion in Neurobiology 16(6): 645-649.
Baumann, S., S. Koeneke, M. Meyer, K. Lutz and L. Jancke (2005). "A network for sensory-motor integration: what happens in the auditory cortex during piano playing without acoustic feedback?" Ann N Y Acad Sci 1060: 186-188.
Baumann, S., S. Koeneke, C. F. Schmidt, M. Meyer, K. Lutz and L. Jancke (2007). "A network for audio-motor coordination in skilled pianists and non-musicians." Brain Res 1161: 65-78.
Brown, R. M. and C. Palmer (2013). "Auditory and motor imagery modulate learning in music performance." Frontiers in Human Neuroscience 7.
Brown, R. M., R. J. Zatorre and V. B. Penhune (2015). Expert music performance: cognitive, neural, and developmental bases. Music, Neurology, and Neuroscience: Evolution, the Musical Brain, Medical Conditions, and Therapies. E. Altenmuller, S. Finger and F. Boller. 217: 57-86.
Buccino, G., F. Binkofski, G. R. Fink, L. Fadiga, L. Fogassi, V. Gallese, R. J. Seitz, K. Zilles, G. Rizzolatti and H. J. Freund (2001). "Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study." European Journal of Neuroscience 13(2): 400-404.
Buhusi, C. V. and W. H. Meck (2005). "What makes us tick? Functional and neural mechanisms of interval timing." Nature Reviews Neuroscience 6(10): 755-765.
Chen, J. L., V. B. Penhune and R. J. Zatorre (2008). "Listening to Musical Rhythms Recruits Motor Regions of the Brain." Cerebral Cortex 18(12): 2844-2854.
Chen, J. L., V. B. Penhune and R. J. Zatorre (2009). The Role of Auditory and Premotor Cortex in Sensorimotor Transformations. Neurosciences and Music Iii: Disorders and Plasticity. S. DallaBella, N. Kraus, K. Overy et al. Malden, Wiley-Blackwell. 1169: 15-34.
Chen, J. L., V. B. Penhune and R. J. Zatorrel (2008). "Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training." Journal of Cognitive Neuroscience 20(2): 226-239.
Furuya, S. and J. F. Soechting (2010). "Role of auditory feedback in the control of successive keystrokes during piano playing." Exp Brain Res 204(2): 223-237.
Greenwald, A. G. (1970). "SENSORY FEEDBACK MECHANISMS IN PERFORMANCE CONTROL - WITH SPECIAL REFERENCE TO IDEO-MOTOR MECHANISM." Psychological Review 77(2): 73-99.
Griffiths, T. D., C. Buchel, R. S. J. Frackowiak and R. D. Patterson (1998). "Analysis of temporal structure in sound by the human brain." Nature Neuroscience 1(5): 422-427.
Griffiths, T. D. and J. D. Warren (2002). "The planum temporale as a computational hub." Trends in Neurosciences 25(7): 348-353.
Haueisen, J. and T. R. Knosche (2001). "Involuntary motor activity in pianists evoked by music perception." Journal of Cognitive Neuroscience 13(6): 786-792.
Hikosaka, O., K. Nakamura, K. Sakai and H. Nakahara (2002). "Central mechanisms of motor skill learning." Current Opinion in Neurobiology 12(2): 217-222.
Imamizu, H., S. Higuchi, A. Toda and M. Kawato (2007). "Reorganization of brain activity for multiple internal models after short but intensive training." Cortex 43(3): 338-349.
Ivry, R. B. and R. M. C. Spencer (2004). "The neural representation of time." Current Opinion in Neurobiology 14(2): 225-232.
Jancke, L. (2012). "The dynamic audio-motor system in pianists." Ann N Y Acad Sci 1252: 246-252.
Keller, P. E. (2008). "Joint action in music performance." Enating intersubjectivity: a cognitive and social perspective to the study of interactions: 205-221.
Keller, P. E., G. Novembre and M. J. Hove (2014). "Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination." Philos Trans R Soc Lond B Biol Sci 369(1658): 20130394.
Lima, C. F., S. Krishnan and S. K. Scott (2016). "Roles of Supplementary Motor Areas in Auditory Processing and Auditory Imagery." Trends in Neurosciences 39(8): 527-542.
Manto, M., J. M. Bower, A. B. Conforto, J. M. Delgado-Garcia, S. N. F. da Guarda, M. Gerwig, C. Habas, N. Hagura, R. B. Ivry, P. Marien, M. Molinari, E. Naito, D. A. Nowak, N. O. Ben Taib, D. Pelisson, C. D. Tesche, C. Tilikete and D. Timmann (2012). "Consensus Paper: Roles of the Cerebellum in Motor Control-The Diversity of Ideas on Cerebellar Involvement in Movement." Cerebellum 11(2): 457-487.
Meister, I. G., T. Krings, H. Foltys, B. Boroojerdi, M. Muller, R. Topper and A. Thron (2004). "Playing piano in the mind--an fMRI study on music imagery and performance in pianists." Brain Res Cogn Brain Res 19(3): 219-228.
Merchant, H., J. Grahn, L. Trainor, M. Rohrmeier and W. T. Fitch (2015). "Finding the beat: a neural perspective across humans and non-human primates." Philosophical Transactions of the Royal Society B-Biological Sciences 370(1664): 91-106.
Nachev, P., C. Kennard and M. Husain (2008). "Functional role of the supplementary and pre-supplementary motor areas." Nature Reviews Neuroscience 9(11): 856-869.
Pearce, M. T. and G. A. Wiggins (2012). "Auditory expectation: the information dynamics of music perception and cognition." Top Cogn Sci 4(4): 625-652.
Pfordresher, P. Q. and R. T. E. Beasley (2014). "Making and monitoring errors based on altered auditory feedback." Frontiers in Psychology 5.
Pfordresher, P. Q., J. T. Mantell, S. Brown, R. Zivadinov and J. L. Cox (2014). "Brain responses to altered auditory feedback during musical keyboard production: An fMRI study." Brain Research 1556: 28-37.
Ruiz, M. H., H. C. Jabusch and E. Altenmuller (2009). "Detecting Wrong Notes in Advance: Neuronal Correlates of Error Monitoring in Pianists." Cerebral Cortex 19(11): 2625-2639.
Sammler, D., G. Novembre, S. Koelsch and P. E. Keller (2013). "Syntax in a pianist''s hand: ERP signatures of "embodied" syntax processing in music." Cortex 49(5): 1325-1339.
Schmidt, R. A. (1975). "A Schema Theory of Discrete Motor Skill Learning." Psysiological Review 82: 36.
Visser, M., E. Jefferies, K. V. Embleton and M. A. L. Ralph (2012). "Both the Middle Temporal Gyrus and the Ventral Anterior Temporal Area Are Crucial for Multimodal Semantic Processing: Distortion-corrected fMRI Evidence for a Double Gradient of Information Convergence in the Temporal Lobes." Journal of Cognitive Neuroscience 24(8): 1766-1778.
Visser, M. and M. A. L. Ralph (2011). "Differential Contributions of Bilateral Ventral Anterior Temporal Lobe and Left Anterior Superior Temporal Gyrus to Semantic Processes." Journal of Cognitive Neuroscience 23(10): 3121-3131.
Zarate, J. M. and R. J. Zatorre (2008). "Experience-dependent neural substrates involved in vocal pitch regulation during singing." Neuroimage 40(4): 1871-1887.
Zatorre, R. J., J. L. Chen and V. B. Penhune (2007). "When the brain plays music: auditory-motor interactions in music perception and production." Nat Rev Neurosci 8(7): 547-558.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top