|
1. Yu, A.; Chabot, V.; Zhang, J., Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications; CRC Press, 2013. 2. Guerrero, M. A.; Romero, E.; Barrero, F.; Milanés, M. I.; González, E., Supercapacitors: Alternative Energy Storage Systems. Electrical Rev. 2009, 85, 188-195. 3. Abbey, C.; Joos, G., Supercapacitor Energy Storage for Wind Energy Applications. ITIA 2007, 43, 769-776. 4. Ahmed, M. M.; Imae, T., Electrochemical Properties of a Thermally Expanded Magnetic Graphene Composite with a Conductive Polymer. Phys. Chem. Chem. Phys. 2016, 18, 10400-10410. 5. Liu, M.; Tjiu, W. W.; Pan, J.; Zhang, C.; Gao, W.; Liu, T., One-Step Synthesis of Graphene Nanoribbon–Mno 2 Hybrids and Their All-Solid-State Asymmetric Supercapacitors. Nanoscale 2014, 6, 4233-4242. 6. Frackowiak, E.; Beguin, F., Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon 2001, 39, 937-950. 7. Peng, C.; Zhang, S.; Jewell, D.; Chen, G. Z., Carbon Nanotube and Conducting Polymer Composites for Supercapacitors. Prog. Nat. Sci. 2008, 18, 777-788. 8. Halper, M. S.; Ellenbogen, J. C., Supercapacitors: A Brief Overview. MITRE Nanosystems Group 2006. 9. Lu, M.; Beguin, F.; Frackowiak, E., Supercapacitors: Materials, Systems and Applications; John Wiley & Sons, 2013. 10. Wang, G.; Zhang, L.; Zhang, J., A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828. 11. Béguin, F.; Frackowiak, E., Carbons for Electrochemical Energy Storage and Conversion Systems; CRC Press, 2009. 12. Chen, X.; Paul, R.; Dai, L., Carbon-Based Supercapacitors for Efficient Energy Storage. Natl. Sci. Rev. 2017, nwx009. 13. Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M., Aligned Mwcnt Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance. Electrochem. Solid-State Lett. 2007, 10, A106-A110. 14. Lu, W.; Dai, L., Carbon Nanotube Supercapacitors. In Carbon Nanotubes, InTech, 2010. 15. Li, W.; Zhang, F.; Dou, Y.; Wu, Z.; Liu, H.; Qian, X.; Gu, D.; Xia, Y.; Tu, B.; Zhao, D., A Self‐Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. Adv. Energy Mater. 2011, 1, 382-386. 16. Wang, K.; Wang, Y.; Wang, Y.; Hosono, E.; Zhou, H., Mesoporous Carbon Nanofibers for Supercapacitor Application. J. Phys. Chem. C 2008, 113, 1093-1097. 17. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863-4868. 18. Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S., Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Lett. 2012, 12, 1806-1812. 19. Simon, P.; Gogotsi, Y., Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845-854. 20. Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L., Progress of Electrochemical Capacitor Electrode Materials: A Review. Int. J. Hydrogen Energy 2009, 34, 4889-4899. 21. Zhang, Z.; Han, S.; Wang, C.; Li, J.; Xu, G., Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials (Basel) 2015, 5, 1732-1755. 22. Bandow, S.; Kokai, F.; Takahashi, K.; Yudasaka, M.; Qin, L. C.; Iijima, S., Interlayer Spacing Anomaly of Single-Wall Carbon Nanohorn Aggregate. Chem. Phys. Lett. 2000, 321, 514-519. 23. Iijima, S.; Yudasaka, M.; Yamada, R.; Bandow, S.; Suenaga, K.; Kokai, F.; Takahashi, K., Nano-Aggregates of Single-Walled Graphitic Carbon Nano-Horns. Chem. Phys. Lett. 1999, 309, 165-170. 24. Zhu, S.; Xu, G., Single-Walled Carbon Nanohorns and Their Applications. Nanoscale 2010, 2, 2538-2549. 25. Unnikrishnan, B.; Wu, C.-W.; Chen, I.-W. P.; Chang, H.-T.; Lin, C.-H.; Huang, C.-C., Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application. ACS Sustain. Chem. Eng. 2016, 4, 3008-3016. 26. Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W., Carbon Dots: Surface Engineering and Applications. J. Mater. Chem. B 2016, 4, 5772-5788. 27. Zhang, X.; Wang, J.; Liu, J.; Wu, J.; Chen, H.; Bi, H., Design and Preparation of a Ternary Composite of Graphene Oxide/Carbon Dots/Polypyrrole for Supercapacitor Application: Importance and Unique Role of Carbon Dots. Carbon 2017, 115, 134-146. 28. Lokhande, C.; Dubal, D.; Joo, O.-S., Metal Oxide Thin Film Based Supercapacitors. CAP 2011, 11, 255-270. 29. Yang, D., Application of Nanocomposites for Supercapacitors: Characteristics and Properties. In Nanocomposites-New Trends and Developments, InTech, 2012. 30. Zhou, J.; Yu, L.; Liu, W.; Zhang, X.; Mu, W.; Du, X.; Zhang, Z.; Deng, Y., High Performance All-Solid Supercapacitors Based on the Network of Ultralong Manganese Dioxide/Polyaniline Coaxial Nanowires. Sci. Rep. 2015, 5. 31. Molapo, K. M.; Ndangili, P. M.; Ajayi, R. F.; Mbambisa, G.; Mailu, S. M.; Njomo, N.; Masikini, M.; Baker, P.; Iwuoha, E. I., Electronics of Conjugated Polymers (I): Polyaniline. Int. J. Electrochem. Sci. 2012, 7, 11859-11875. 32. Snook, G. A.; Kao, P.; Best, A. S., Conducting-Polymer-Based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196, 1-12. 33. Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y., Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage. Int. J. Mol. Sci. 2010, 11, 2636-2657. 34. Baisden, A. C.; Emadi, A., Advisor-Based Model of a Battery and an Ultra-Capacitor Energy Source for Hybrid Electric Vehicles. IEEE T. Veh. Technol. 2004, 53, 199-205. 35. Sarangapani, S.; Tilak, B.; Chen, C. P., Materials for Electrochemical Capacitors Theoretical and Experimental Constraints. J. Electrochem. Soc. 1996, 143, 3791-3799. 36. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935. 37. Conway, B. E., Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. J. Electrochem. Soc. 1991, 138, 1539-1548. 38. Douglas, H.; Pillay, P. In Sizing Ultracapacitors for Hybrid Electric Vehicles, Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, IEEE: 2005; p 6 pp. 39. Khaligh, A.; Li, Z., Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-in Hybrid Electric Vehicles: State of the Art. IEEE T. Veh. Technol. 2010, 59, 2806-2814. 40. Karden, E.; Ploumen, S.; Fricke, B.; Miller, T.; Snyder, K., Energy Storage Devices for Future Hybrid Electric Vehicles. J. Power Sources 2007, 168, 2-11. 41. Emadi, A.; Lee, Y. J.; Rajashekara, K., Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-in Hybrid Electric Vehicles. ITIE 2008, 55, 2237-2245. 42. Osaka, T.; Datta, M., Energy Storage Systems in Electronics; CRC Press, 2000. 43. Burke, A. F., Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles. Proc. IEEE 2007, 95, 806-820. 44. Bean, H.; Robins, M.; Flach, M., Ultracapacitor-Based Power Supply for an Electronic Device. Google Patents: 2002. 45. Salerno, D., Ultralow Voltage Energy Harvester Uses Thermoelectric Generator for Battery-Free Wireless Sensors. LT Journal 2010, 2010, 1-11. 46. Di, W.; Haolan, W.; Pritesh, H.; Piers, A.; Tapani, R.; Yasuhiko, H.; Gehan, A. J. A., Template-Free Electrochemical Nanofabrication of Polyaniline Nanobrush and Hybrid Polyaniline with Carbon Nanohorns for Supercapacitors. Nanotechnology 2010, 21, 435702. (doi:10.1088/0957-4484/21/43/435702) 47. Maiti, S.; Khatua, B., Polyaniline Integrated Carbon Nanohorn: A Superior Electrode Materials for Advanced Energy Storage. Express Polym. Lett. 2014, 8, 895-907. 48. Pal, A.; Sk, M. P.; Chattopadhyay, A., Conducting Carbon Dot–Polypyrrole Nanocomposite for Sensitive Detection of Picric Acid. ACS Appl. Mater. Inter. 2016, 8, 5758-5762. 49. Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P., Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission. J. Am. Chem. Soc. 2011, 134, 747-750. 50. Babu, V. J.; Vempati, S.; Ramakrishna, S., Conducting Polyaniline-Electrical Charge Transportation. Mater. Sci. Appl. 2013, 4, 1-10. 51. Blinova, N. V.; Stejskal, J.; Trchová, M.; Prokeš, J.; Omastová, M., Polyaniline and Polypyrrole: A Comparative Study of the Preparation. Eur. Polym. J. 2007, 43, 2331-2341. 52. Zhou, D.; Li, Y.; Wang, J.; Xu, P.; Han, X., Synthesis of Polyaniline Nanofibers with High Electrical Conductivity from Ctab–Sdbs Mixed Surfactants. Mater. Lett. 2011, 65, 3601-3604. 53. Stejskal, J.; Omastová, M.; Fedorova, S.; Prokeš, J.; Trchová, M., Polyaniline and Polypyrrole Prepared in the Presence of Surfactants: A Comparative Conductivity Study. Polymer 2003, 44, 1353-1358. 54. Mi, H.; Zhang, X.; Ye, X.; Yang, S., Preparation and Enhanced Capacitance of Core–Shell Polypyrrole/Polyaniline Composite Electrode for Supercapacitors. J. Power Sources 2008, 176, 403-409. 55. Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science & Business Media, 2013. 56. Oueiny, C.; Berlioz, S.; Perrin, F.-X., Carbon Nanotube–Polyaniline Composites. Prog. Polym. Sci. 2014, 39, 707-748. 57. Zhou, Y.; Qin, Z.-Y.; Li, L.; Zhang, Y.; Wei, Y.-L.; Wang, L.-F.; Zhu, M.-F., Polyaniline/Multi-Walled Carbon Nanotube Composites with Core–Shell Structures as Supercapacitor Electrode Materials. Electrochim. Acta. 2010, 55, 3904-3908. 58. Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y., Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Lett. 2014, 14, 2522-2527. 59. Reynolds, J. R., Conjugated Polymers: Processing and Applications; CRC press, 2006. 60. Choi, J.; Chipara, M.; Xu, B.; Yang, C.; Doudin, B.; Dowben, P., Comparison of the Π-Conjugated Ring Orientations in Polyaniline and Polypyrrole. Chem. Phys. Lett. 2001, 343, 193-200. 61. Zhou, Y.-k.; He, B.-l.; Zhou, W.-j.; Huang, J.; Li, X.-h.; Wu, B.; Li, H.-l., Electrochemical Capacitance of Well-Coated Single-Walled Carbon Nanotube with Polyaniline Composites. Electrochim. Acta. 2004, 49, 257-262. 62. Shaktawat, V.; Jain, N.; Saxena, R.; Saxena, N.; Sharma, K.; Sharma, T., Temperature Dependence of Electrical Conduction in Pure and Doped Polypyrrole. Polym. Bull. (Berl.) 2006, 57, 535-543. 63. Zheng, Q.; Xue, Q.; Yan, K.; Hao, L.; Li, Q.; Gao, X., Investigation of Molecular Interactions between Swnt and Polyethylene/Polypropylene/Polystyrene/Polyaniline Molecules. J. Phys. Chem. C 2007, 111, 4628-4635. 64. Street, G.; Clarke, T.; Geiss, R.; Lee, V.; Nazzal, A.; Pfluger, P.; Scott, J., Characterization of Polypyrrole. J. Phys. Colloq. 1983, 44, C3-599-C3-606. 65. Li, Y., Organic Optoelectronic Materials; Springer, 2015; Vol. 91. 66. Wang, R.-X.; Huang, L.-F.; Tian, X.-Y., Understanding the Protonation of Polyaniline and Polyaniline–Graphene Interaction. J. Phys. Chem. C 2012, 116, 13120-13126. 67. Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J., Aromatic Interactions. J. Chem. Soc., Perkin. Trans. 2 2001, 651-669. 68. Sun, L.; Tian, C.; Fu, Y.; Yang, Y.; Yin, J.; Wang, L.; Fu, H., Nitrogen‐Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chem. Eur. J. 2014, 20, 564-574. 69. Kulkarni, S. B.; Patil, U. M.; Shackery, I.; Sohn, J. S.; Lee, S.; Park, B.; Jun, S., High-Performance Supercapacitor Electrode Based on a Polyaniline Nanofibers/3d Graphene Framework as an Efficient Charge Transporter. J. Mater. Chem. A 2014, 2, 4989-4998. 70. Chen, S.; Xing, W.; Duan, J.; Hu, X.; Qiao, S. Z., Nanostructured Morphology Control for Efficient Supercapacitor Electrodes. J. Mater. Chem. A 2013, 1, 2941-2954. 71. Im, S.; Park, Y. R.; Park, S.; Kim, H. J.; Doh, J. H.; Kwon, K.; Hong, W. G.; Kim, B.; Yang, W. S.; Kim, T., Nanoparticle Intercalation-Induced Interlayer-Gap-Opened Graphene–Polyaniline Nanocomposite for Enhanced Supercapacitive Performances. Appl. Surf. Sci. 2017, 412, 160-169. 72. Jian, X.; Li, J.-g.; Yang, H.-m.; Zhang, E.-h.; Liang, Z.-h., Carbon Quantum Dots Reinforced Polypyrrole Nanowire Via Electrostatic Self-Assembly Strategy for High-Performance Supercapacitors. Carbon 2017, 114, 533-543.
|