跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/02 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:麥維陸
研究生(外文):Robeth Viktoria Manurung
論文名稱:Nanostructured platforms for biomedical implants and bioimaging
論文名稱(外文):Nanostructured platforms for biomedical implants and bioimaging
指導教授:Surojit Chattopadhyay
指導教授(外文):Surojit Chattopadhyay
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:194
中文關鍵詞:N/A
外文關鍵詞:Titania nanotubesproliferationadhesionupconversion nanoparticlesgold sandwichmetal enhanced fluorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
Nanotechnology offers promising opportunities and unprecedented compatibilities in manipulating chemical and biological materials at the atomic or molecular scale for the development of novel functional materials. It plays a central role in the recent technological advances in biomedical technology, especially in the areas of implant material, drug delivery and cellular bioimaging for diagnosis. In this thesis, we demonstrated two field of nanomaterials for biomedical application namely, interacting and behavior of osteoblast cell line (MG-63) and human mesenchymal stem cell on titania nanotubes as extra cellular matrix. The second part is the effect of gold sandwich layer to tune plasmonic enhancement of up conversion nanoparticles Er doped with silica coated.
1. Osteoblast cell line MG-63 & hMSC behavior: proliferation, adhension, differentiation and migration on anodized TiO2 nanotubes.
Human osteosarcoma cells MG-63 and human mesenchymal stem cell were cultured on anodically etched titania nanotubes (TiO2 NT), with diameters ranging from 40-100 nm, to study the correlations between cell proliferation and adhesion on the 2.5 dimensional (2.5D) extracellular matrix (ECM). Unlike other reports, mostly based on mouse stem cells, and 2D cell culture, our studies indicate that the 2.5D NT promote higher proliferation and activity, but less 2D adhesion for MG-63 cell. Proliferation of the MG-63 cells was significantly higher in the NTs, the best being the 70 nm diameter sample, compared to planar titania (control). The cellular adhesion was stronger on TiO2 NT with increasing diameter, and highest on the control. On the other hand, a higher proliferation and adhesion of hMSC has been indicated on 2.5D NT. The proliferation and adhesion of the hMSC was significantly higher on the smallest diameter (40 nm) NTs, compared to 70, 100 nm NTs and planar titania (control). The cellular adhesion was obtain from paxilin imaging, and western blot measurements probing focal adhesion kinase, p130 CAS, and extracellular regulated kinase, in addition to cell morphology imaging by fluorescence microscopy and shear stress measurement. We evaluated differentiation of hMSCs into osteoblasts by using two conditions, in a presence and absent of osteogenic inducing media. The hMSC differentiation behavior in presence of osteogenic-inducing media showed a highest ALP protein deposit on smallest diameter NTs (40 nm diameter) compare than 70, 100 nm TiO2 NTs and control. Interestingly, a very dramatic change in hMSC behavior in a relatively narrow range of nanotube dimensions. Small (40-nm diameter) nanotubes promoted higher adhesion and lowest differentiation, whereas larger (100-nm diameter) nanotubes elicited a dramatic stem cell elongation, which induced cytoskeletal stress and triggered highest differentiation into osteoblast-like cells. The evidence in an agreement with the previous published result. We provide direct videography of cell migration of MG-63 and hMSC to show correlation between cell speed data on the TiO2 NT surfaces and cell-ECM adhesion force. This evidence was not available previously. The difference in the results, with those previously published, may be generally attributed to, among others, the use of mouse stem cells (human osteosarcoma and human mesenchymal stem cell used here), and unannealed as-grown TiO2 NTs used previously (annealed ECMs used here).
2. A plasmon-tuned ‘Gold sandwich’ for metal enhanced fluorescence in silica coated NaYF4:Yb,Er upconversion nanoparticles.
The low quantum yield of luminescence from lanthanide doped up-conversion nanoparticles (UCNPs) has been enhanced by using an optimized ‘gold sandwich’ with a transparent top layer and a reflecting bottom layer at the 980 nm excitation. Erbium (Er) doped UCNPs, NaYF4:Yb,Er core were synthesized by the thermal decomposition process, and coated with a silica to assist in metal enhanced fluorescence (MEF). A bottom layer of thick coalesced gold island film, acting as a mirror, increases the optical path length of the 980 nm radiation through the UCNP layer dispersed on it. This layer enhances the UCNP’s 540 nm green emission by a factor of 5-8 when compared in absence of the gold reflector. A thin nanoparticle-like gold layer on top of the UCNPs, with a surface plasmon absorption around ~550 nm, completes the sandwich which augments the luminescence enhancement by another factor of ~2.5 thus taking the net enhancement factor to ~13-19 when compared in absence of the gold-sandwich. The surface plasmon absorption in the top gold layer enhances the local electric field at the UCNPs to promote their radiative decay. Compared to previous reports, mostly in solution state, the current case study is a solid state measurement.
Acknowledgment................................................................................................ ii
Abstract............................................................................................................... iv
Outline of the thesis............................................................................................ vii
Table of contents................................................................................................. ix
List of figures...................................................................................................... xiv
List of tables….................................................................................................... xxiii
Chapter 1 – Nanomaterial for biomedical implants....................................... 1
1.1 Nanomaterial for biomedical implants: overview.......................................... 1
1.2 An introduction of titanium dioxide............................................................... 2
1.2.1 The structure of TiO2 ............................................................................... 2
1.2.2 Ionic properties......................................................................................... 4
1.2.3 Electronic properties................................................................................ 5
1.3 Titanium dioxide as biomaterial..................................................................... 7
1.4 Nanostructured TiO2....................................................................................... 8
1.5 Anodization of titanium.................................................................................. 9
1.5.1 Barrier layer types of anodic TiO2............................................................ 9
1.5.2 Porous/tubular layer type of anodic TiO2................................................. 10
1.6 Annealing of the TiO2 tubes........................................................................... 13
1.7 Applications of anodic TiO2 nanotube: an overview...................................... 14
1.7.1 Photo-catalytic......................................................................................... 14
1.7.2 Photovoltaic.............................................................................................. 15
1.7.3 Biomedical............................................................................................... 16
1.7.3.1 Implant materials................................................................................ 16
1.7.3.2 Drug delivery and the release of other payloads................................. 16
1.7.3.3 Other applications............................................................................... 18
1.8 Cellular nano-features and function of the cell.............................................. 18
1.9 Extracellular matrix (ECM) ........................................................................ 20
1.10 Cell – ECM interaction................................................................................ 22
1.11 Human mesenchymal stem cell (hMSC)...................................................... 24
1.12 Human osteosarcoma cell ........................................................................... 25
Chapter 2 – Nanoparticles for bioimaging....................................................... 26
2.1 Fluorescence .................................................................................................. 26
2.2 Multiphoton absorption ................................................................................. 27
2.3 Fluorescent nanoparticles............................................................................... 28
2.3.1 Organic dye ............................................................................................. 28
2.3.2 Organic dye doped nanoparticles............................................................. 29
2.3.3 Quantum dot............................................................................................. 29
2.3.4 Upconversion nanoparticles (UCNPs)..................................................... 30
2.4 The classification of upconversion process.................................................... 34
2.4.1 Excited-state absorption (ESA) ............................................................... 34
2.4.2 Energy transfer upconversion (ETU) ...................................................... 35
2.4.3 Cooperative sensitization upconversion (CSU) ...................................... 38
2.4.4 Cross relaxation (CR) .............................................................................. 39
2.4.5 Photon avalanche (PA) ............................................................................ 39
2.5 Synthesis of upconversion nanoparticles....................................................... 40
2.6 Strategies to achieve high efficiency UCNPs................................................ 41
2.6.1 Selection of host materials....................................................................... 42
2.6.2 Tailoring local crystal field....................................................................... 44
2.6.3 Optimizing energy transfer....................................................................... 44
2.6.4 Suppression of surface related deactivations........................................... 45
2.6.5 Plasmonic enhancement........................................................................... 46
2.7 Excitation power dependence of upconversion luminescence intensity........ 48
2.7.1 Low excitation power regime................................................................... 50
2.7.2 High excitation power regime.................................................................. 51
2.8 Upconversion efficiency................................................................................ 51
2.9 Biocompatibility of UCNPs........................................................................... 52
2.9.1 Hydrophilic processing............................................................................ 52
2.9.2 Surface functionalization.......................................................................... 53
2.10 Biomedical applications............................................................................... 53
2.10.1 Cell imaging........................................................................................... 54
2.10.2 Cell tracking........................................................................................... 55
2.10.3 Tumor targeting...................................................................................... 56
2.10.4 Photodynamic therapy (PDT) ................................................................ 56
2.10.5 UCNPs-based nanocomposites for chemotherapy................................. 56
Chapter 3 Experimental details….................................................................... 58
3.1 Synthesis of TiO2 nanotube............................................................................ 58
3.1.1 Electrochemical cell................................................................................. 58
3.1.2 Power supply............................................................................................ 59
3.1.3 Anodization of titanium in fluoride-based electrolytes............................ 59
3.1.4 Post-treatment: annealing of the nanotubes............................................. 60
3.2 Isolation and cell culture................................................................................ 60
3.2.1 MG-63 cell............................................................................................... 60
3.2.2 Human mesenchymal stem cell (hMSC).................................................. 61
3.3 Immunofluorescence of cell structure on TiO2 nanotubes............................. 62
3.4 MG-63 cell shear stress resistance assay...................................................... 62
3.5 Western blot cell adhesion protein analysis................................................... 64
3.6 Immunocytochemistry of focal adhesion protein........................................... 65
3.7 Cell proliferation assay.................................................................................. 65
3.8 Alkaline phosphatase activity......................................................................... 66
3.9 Live cell imaging of cell migration observation.......................................... 67
3.10 Synthesis of NaYF4:Yb3+, Er3+ core nanoparticles...................................... 67
3.11 Synthesis of the SiO2 shell on the NaYF4:Yb3+, Er3+ nanoparticles............ 68
3.12 Synthesis and preparation of single and sandwich layer of gold-coated Si
and NaYF4:Yb,Er/SiO2 nanoparticles..........................................................
70
3.13 Characterization technique........................................................................... 70
3.13.1 Morphology characterization…............................................................. 70
3.13.2 Structure & optical properties characterization...................................... 71
3.13.3 Photoluminescence emission.................................................................. 72
Chapter 4 – Osteoblast cell line MG-63 and hMSC behavior: proliferation, adhension and migration on anodized TiO2 nanotubes .................................
74
4.1 Introduction.................................................................................................... 74
4.2 Materials and methods................................................................................... 76
4.3 Results and discussion.................................................................................... 77
4.3.1 Structures and surface characterization of TiO2 nanotubes...................... 77
4.3.2 The cellular interactions between cell and ECM...................................... 81
4.3.2.1 MG-63 cell – TiO2 NTs interactions................................................... 81
4.3.2.2 hMSC – TiO2 NTs interactions........................................................... 84
4.3.3 Cell proliferation...................................................................................... 86
4.3.3.1 MG-63 proliferation............................................................................ 87
4.3.3.2 hMSC proliferation............................................................................. 89
4.3.4 Cell adhesion on TiO2 nanotubes............................................................. 90
4.3.4.1 Shear stress measurement of MG-63 cell on TiO2 NTs...................... 91
4.3.4.2 Immunogold staining of paxilin.......................................................... 92
4.3.4.3 Focal adhesion mapping by immunocytochemistry............................ 94
4.3.4.4 Western blott measurement................................................................. 97
4.3.5 MG-63 cell & hMSC motility on TiO2 nanotubes................................... 100
4.3.6 Alkaline Phosphatase Activity in hMSC osteogenic differentiation....... 102
4.4 Conclusion...................................................................................................... 105
Chapter 5 – A plasmon-tuned ‘Gold sandwich’ for metal enhanced fluorescence in silica coated NaYF4:Yb, Er upconversion nanoparticles.....
106
5.1 Introduction.................................................................................................... 106
5.2 Materials and methods................................................................................... 108
5.3 Results and discussion.................................................................................... 110
5.4 Conclusion...................................................................................................... 126
Chapter 6 – Summary and future direction.................................................... 128
References........................................................................................................... 132
List of publications............................................................................................. 149
[1] https://www.census.gov/newsroom/releases/archives/2010_census/cb11-cn192.html
[2] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Report, 48: 53-229 (2003).
[3] A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis”, J. Photochem. Photobiol. C, 1: 1-21 (2000).
[4] A. Kudo, Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev., 38: 253-278 (2009).
[5] S. K. Mohapatra, et al., “Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-x Cx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode”, J. Phys. Chem. C, 111: 8677-8685 (2007).
[6] S. -D. Mo, W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite”, Phy. Rev. B, 51:13023 (1995).
[7] J.-G. Li, T. Ishigaki, X. Sun, “Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions:  Phase-Selective Synthesis and Physicochemical Properties”, J. Phys. Chem. C, 111: 4969-4976 (2007).
[8] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics”, New York (Wiley) 1976.
[9] A. Aladjem, et al.,”Electron-beam crystallization of anodic oxide films”, Electrochim. Acta, 15: 663-671 (1970).
[10] O. K. Varghese, et al.,“Crystallization and high-temperature structural stability of titanium oxide nanotube arrays”, J. Mater. Res., 18: 156-165 (2003).
[11] L. Young,”Anodic Oxide Films”, New York (Plenum) (1961).
[12] R. Memming, “Semiconductor Electrochemistry”, Weinheim (Wiley) (2001).
[13] H. Habazaki, et al., “Ionic Mobilities in Amorphous Anodic Titania”, J. Electrochem. Soc., 149: B70 (2002).
[14] L. Kavan, M. Grätzel, J. Rathousky, A. Zukal, “Nanocrystalline TiO2 (anatase) electrodes: surface morphology, adsorption, and electrochemical properties”, J. Electrochem. Soc., 143: 394-400 (1996).
[15] N. Serpone, E. Pelizzetti, “Photocatalysis - Fundamentals and Applications”, New York (Wiley) (1989).
[16] E. D. John, “Bone bonding at natural and biomaterial surfaces”, Biomaterials, 28: 5058-5067 (2007).
[17] K. Wang, “The use of titanium for medical applications in the USA”, Mat. Sci. Eng. A Struct., 213: 134-137 (1996).
[18] M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications”, J. Mech. Behav. Biomed., 1: 30-42 (2008).
[19] R. Van Noort, “Titanium: The implant material of today”, Journal of Materials Science, 22: 3801-3811 (1987).
[20] P. Tengvall, I. Lundström, “Physico-chemical considerations of titanium as a biomaterial”, Clin. Mater., 9: 115-134 (1992).
[21] D. Cáceres, et al., “Nanomechanical properties of surface-modified titanium alloys for biomedical applications Acta Biomater., 4: 1545-1552 (2008).
[22] E. A. B. Effah, P. D. Bianco, P. Ducheyne, “Crystal structure of the surface oxide layer on titanium and its changes arising from immersion”, J Biomed. Mat. Res., 29: 73-80 (1995).
[23] M. Long, H. J. Rack, “Titanium alloys in total joint replacement--a materials science perspective”, Biomaterials, 19: 1621-1639 (1998).
[24] S. Speroni, et al., “Hard and soft tissue augmentation in implant surgery: a case report”. Minerva Stomatol., 60: 123-131 (2011).
[25] G. Mendonca, et al., “Advancing dental implant surface technology--from micron- to nanotopography”, Biomaterials, 29: 3822-3835 (2008).
[26] S. J. Heo, et al., “Stability measurements of craniofacial implants by means of resonance frequency analysis. A clinical pilot study, J. Laryngol Otol, 112: 537-542 (1998).
[27] L. Peng, et al., “The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation”, Biomaterials, 30: 1268-72 (2009).
[28] J. Tillander, et al., “Osseointegrated titanium implants for limb prostheses attachments: infectious complications”, Clin. Orthop. Relat. Res., 468: 2781-27888 (2010).
[29] C. Smith, et al., “Engineering a titanium and polycaprolactone construct for a biocompatible interface between the body and artificial limb”, Tissue Eng Part A, 16: 717-724 (2010).
[30] D. T. Luttikhuizen, M. C. Harmsen, M. J. Van Luyn, “Engineering a titanium and polycaprolactone construct for a biocompatible interface between the body and artificial limb”, Tissue Eng. Part A, 12: 1955-1970 (2006).
[31] NOF National Osteoporosis Foundation (NOF), Advances in Osteoporosis Prevention, Diagnosis and Treatment Presented at 7th (2007). http://nof.org/news/185. (Accessed: 4th September 2014).
[32] D. F. Emery, H. J. Clarke, M. L. Grover, “Stanmore total hip replacement in younger patients: review of a group of patients under 50 years of age at operation”, J. Bone Joint Surg. Br., 79: 240-246 (1997).
[33] T. J. Webster, J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo”, Biomaterials, 25: 4731-4739 (2004).
[34] H. N. Kim, et al., “Nanotopography-guided tissue engineering and regenerative medicine”, Adv. Drug Deliv. Rev., 65: 536–558 (2013).
[35] X. Chen, S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chem. Rev., 107: 2891-2959 (2007)
[36] E. E. Swan, et al., “Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture”, J. Biomed. Mater. Res A., 72:288-295 (2005).
[37] J. W. Diggle, T. C. Downie, C. W. Goulding, “Anodic oxide films on aluminum”, Chem. Rev., 69: 365-405 (1969).
[38] J. W. Schultze, M. M. Lohrengel, “Stability, reactivity and breakdown of passive films. Problems of recent and future research”, Electrochim. Acta, 45: 2499-2513 (2000).
[39] M. M. Lohrengel, “Thin anodic oxide layers on aluminium and other valve metals: High-field regime”, Mater. Sci. & Eng. Reports, R11: 243-294 (1993).
[40] R. Beranek, H. Hildebrand, P. Schmuki, “Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes”, Electrochem. Sol. State Lett., 6: B12 (2003).
[41] L. V. Taveira, et al., “Impedance Behavior of TiO2 Nanotubes Formed by Anodization in NaF Electrolytes”, J. Electrochem. Soc., 153: B137 (2006).
[42] Q. Cai, et al., “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation”, J. Mater. Res., 20: 230-235 (2005).
[43] V. M. Prida, et al., “Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays”, J. Magnetism & Magnetic. Mater., 316: 110-113 (2007)
[44] H. Tang, et al., “Electrical and optical properties of TiO2 anatase thin films”, J. Appl. Phys., 75: 2042-2047 (1994).
[45] R. Beranek, et al., “Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes”, App. Phy.Lett., 87: 243114- 243116 (2005).
[46] A. L. Linsebigler, G. Lu, J. T. Yates Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., 95: 735-758 (1995).
[47] D. Chianca de Mouraa, et al., “Electrochemical degradation of Acid Blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode”, Environmental Nanotechnology, Monitoring & Management, 5: 13 (2016)
[48] H. Gerischer, H. Tributsch, “Elektrochemische Untersuchung der spektralen Sensibilisierung von ZnO-Einkristallen”, Ber. Bunsenges. Phys. Chem., 72: 437-445 (1968).
[49] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353: 737-740 (1991).
[50] M. Grätzel, “Dye-sensitized solar cells”, J. Photochem. Photobiol. C, 4: 145-153 (2003).
[51] S. Bauer, S. Kleber, P. Schmuki, “TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes”, Electrochem. Commun., 8: 1321-1325 (2006).
[52] C. VonWilmowsky, et al., “In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig”, J. Biomed. Mater. Res. Part B, 89: 165-171 (2009).
[53] J. Park, et al., “Nanosize and vitality: TiO2 nanotube diameter directs cell fate”, Nano Lett., 7: 1686-1691 (2007).
[54] K. C. Popat, et al., “Influence of engineered titania nanotubular surfaces on bone cells”, Biomaterials, 28: 3188-3197 (2007).
[55] K. C. Popat, et al., “Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes”, Biomaterials, 28: 4880-4888 (2007).
[56] N. K. Shrestha, et al., “Magnetically Guided Titania Nanotubes for Site‐Selective Photocatalysis and Drug Release”, Angew. Chem., 121: 969-972 (2009).
[57] Y. Y. Song, et al., “Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes”, Angew. Chem. Int. Ed., 49: 351-354 (2010).
[58] Y. Y. Song, et al., “Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system”, J. Am. Chem. Soc., 131: 4230-4232 (2009).
[59] I. D. Kim, et al., “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers”, Nano Lett., 6: 2009-2013 (2006).
[60] O. K. Varghese, et al., “Hydrogen sensing using titania nanotubes”, Sens. Actuators B, 93: 338-344 (2003).
[61] H. Wang, et al., “A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film”, Sensors, 4:16423-16433 (2014).
[62] R. Hahn, et al., “Semimetallic TiO2 nanotubes”, Angew. Chem. Int. Ed., 48, 7236-7239 (2009).
[63] B. Alberts, et al., “Molecular Biology of the Cell”, Fourth Edition. 2002 : Garland Science.
[64] H. K. Kleinman, D. Philip, and M. P. Hoffman, “Role of the extracellular matrix in morphogenesis”, Curr Opin Biotechnol 14:526-532 (2003).
[65] V. Ottani, et al., “Hierarchical structures in fibrillar collagens”, Micron 33:587-596 (2002).
[66] M. van der Rest and R. Garrone, “Collagen family of proteins”, Faseb Journal 5:2814-2823 (1991).
[67] E. W. Raines, “The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease”, Int. J. Exp.Path., 81:173-182 (2000).
[68] A. Ratcliffe, “Tissue engineering of vascular grafts”, Matrix Biology 19:353-357 (2000).
[69] G. J. Laurent, et al., “Regulation of matrix turnover: fibroblasts, forces, factors and fibrosis”, Biochemical Society Transactions 035:647-651 (2007).
[70] E. White, F. Baralle, A. Muro, “New insights into form and function of fibronectin splice variants”, The Journal of Pathology 216:1-14 (2008).
[71] R. O. Hynes, “Fibronectins”, Springer-Verlag: New York (1990).
[72] W. Zingg, et al., “Effect of surface roughness on platelet adhesion under static and under flow conditions”, Can J Surg., 25:16-19 (1982).
[73] L. E. McNamara, et al., “Nanotopographical control of stem cell differentiation”, J Tissue Eng., 18:120623 (2010).
[74] N. Xia, et al.,”Human mesenchymal stem cells improve the neurodegeneration of femoral nerve in a diabetic foot ulceration rats”, Neurosci. Lett., 597: 84-9 (2015).
[75] Z. Huang, et al.,”Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate”, Mater. Sci. Eng C,. 50: 160-72 (2015).
[76] M. Sila-Asna, et al.,”Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell”, Kobe J Med Sci, 53: 25-35 (2007).
[77] Oh, S., et al., “Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes”, J. Biomed. Mater. Res. A, 78: 97-103 (2006).
[78] Pautke, C., et al., “Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts”, Anticancer Res, 24:3743-3748 (2004).
[79] A. Gyorgyey, et al., “Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material”, Mater. Sci. Eng. C Mater. Biol. Appl, 33: 4251-4259 (2013).
[80] M. Neufurth, et al., “Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells”, Biomaterials, 35:8810-8819 (2014).
[81] S. C. Hsu, et al., “Crude extract of Rheum palmatum inhibits migration and invasion of U-2 OS human osteosarcoma cells by suppression of matrix metalloproteinase-2 and -9. BioMedicine”, 3:120-129 (2013).
[82] A. Billiau, et al., “Human interferon: mass production in a newly established cell line, MG-63”, Antimicrob Agents Chemother, 12: 11-15 (1977).
[83] M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley-VCH Verlag GmBH & Co. KGaA, Weinheim, 2011).
[84] J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Third Edition ed.; Springer: Baltimore, MD, 2006; p 955.
[85] J. F. Suyver, et al.,”Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+”, Journal of Luminescence, 117: 1-12 (2006).
[86] H. Suzuki, I. Y. S. Lee, N. Maeda, “Laser-induced emission from dye-doped nanoparticle aggregates of poly (DL-lactide-co-glycolide)”, Int. J. Phys. Sci. 3: 42-44 (2008).
[87] X. He, et al., “Preparation of luminescent Cy5 doped core-shell SFNPs and its application as a near-infrared fluorescent marker”, Talanta 72: 1519-1526 (2007).
[88] Z. Y. Liu, et al., “Multi-fluorescent dye-doped SiO2/lanthanide complexes hybrid particles”, Mater. Lett. 60: 1629-1633 (2006).
[89] H. Shi, et al., “Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles (RBITC-DSFNPs)-based bioprobes conjugated to Annexin V for apoptosis detection and imaging”, Nanomed. Nanotech. Biol. Med 3: 266-272 (2007).
[90] L. Wang, et al., “Dual-luminophore-doped silica nanoparticles for multiplexed signaling”, Nano Letters 5: 37-43 (2005).
[91] F. Gao, et al., “A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles”, Spectrochim. Acta Mol. Biomol. Spectrosc. 67: 517-521 (2007).
[92] B. O. Dabbousi, et al., “(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites”, J. Phys. Chem. B 101: 9463-9475 (1997).
[93] T. Nann, P. Mulvaney. “Single quantum dots in spherical silica particles. Angew. Chem. 43: 5393-5396 (2004).
[94] J. R. Lakowicz, et al., “Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding”, Anal. Biochem., 280: 128-136 (2000).
[95] J. O. Winter, et al., “Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells”, Adv. Mater., 13: 1673-1677 (2001).
[96] W. R. Algar, et al., ‘‘Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death’’, Anal. Chem. 83: 8826-8837 (2011).
[97] A. M. Smith, S. Nie.‘‘Semiconductor Nano-crystals: Structure, Properties, and Band Gap Engineering. Acc’’, Chem. Res. 43:190-200 (2009).
[98] X. Zhong, et al.,‘‘Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability’’. J. Am. Chem. Soc. 125:8589-8594 (2003).
[99] W. T. Carnall, et al., “A systematic analysis of the spectra of Lanthanides doped into single crystal LaF3”, J Chem. Phys., 90: 3443–3457 (1989).
[100] D. R. Gamelin, H. U. Güdel, “Upconversion processes in transition metal and rare earth metal systems”, Top. Curr. Chem., 214: 1-56 (2001).
[101] L. D. DeLoach, et al., “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications”, IEEE Journal of Quantum Electronics 29, 1179 - 1191 (1993).
[102] X. Yu, et al., “Dopant-controlled synthesis of water soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging”, Nano. Res., 3: 51-60 (2010).
[103] H. J. Liang, et al., “Upconversion luminescence in Yb3+/Tb3+-codoped monodispersed NaYF4 nanocrystals”, Optics Commun., 282: 3028-3031 (2009).
[104] G. Chen, et al., “Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology, 20: 385704 (2009).
[105] O. S. Wolfbeis, “An overview of nanoparticles commonly used in fluorescent bioimaging”, Chem. Soc. Rev., 44: 4743-4768 (2015.
[106] F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids”, Chem. Rev., 104: 139-173 (2004).
[107] G. Y. Chen, et al., “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals”, Appl. Phys. Lett., 91: 133103 (2007).
[108] D. L. Dexter, “A theory of sensitized luminescence in solids”, J. Chem. Phys., 21: 836-850 (1953).
[109] M. Inokuti, F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence”, J. Chem. Phys., 43: 1978-1989 (1965).
[110] K. W. Kramer, et al., “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors”, Chem. Mater., 16: 1244-1251 (2004).
[111] L. Y. Wang, Y. D. Li, et al., “Single-crystal nanorods as multicolor luminescent materials”, Nano Lett., 6: 1645-1649 (2006).
[112] E. De la Rosa, et al., “Strong green upconversion emission in ZrO2: Yb3+-Ho3+ nanocrystals”, Appl. Phys. Lett., 87: 241912 (2005).
[113] H. Dong, L. D. Sun, C. H. Yan, “Basic understanding of the lanthanide related upconversion emissions”, Nanoscale., 5: 5703-5714 (2013).
[114] R. A. Hewes, J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides”, Phys. Rev., 182: 427–436 (1969).
[115] H. J. Liang, et al., “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals”, Opt. Commun., 282: 3028-3031 (2009).238
[116] Y. Dwivedi, S. N. Thakur, S. B. Rai, “Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix”, Appl. Phys. B: Laser Opt., 89: 45-51 (2007).
[117] A. A. Pushkar, T. V. Uvarova, V. V. Kiiko, “Up-conversion multiwave (White) luminescence in the visible spectral range under excitation by IR laser diodes in the active BaY2F8:Yb3+,Pr3+ medium Opt. Spectrosc., 111: 273 (2011).
[118] E.V. Shevchenko, et al., “Gold/iron oxide core/hollow-shell nanoparticles”. Adv. Mater., 20 : 4323-4329 (2008).
[119] Q. Zhang and B. Yan, “Phase control of upconversion nanocrystals and new rare earth fluorides though a diffusion-controlled strategy in a hydrothermal system”. Chem. Commun., 47 : 5867-5869 (2011).
[120] G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4: Yb,Tm nanocrystals with efficient up-conversion fluorescence.” Adv. Funct. Mater.,b16: 2324-2329 (2006).
[121] W. Q. Luo, et al., “Er3+-doped anatase TiO2 nanocrystals: crystal-field levels, excited-state dynamics, upconversion, and defect luminescence”. Small, 7: 3046-3056 (2011).
[122] R. K. Verma, A. Rai, K. Kumar, and S.B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors”. J. Lumin., 130: 1248-1253 (2010).
[123] Y. W. Zhang, et al., “Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor”, J Am. Chem. Soc. 127:3260–1 (2005).
[124] H. S. Mader, et al., “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging”, Curr. Opin. Chem. Biol., 14:582–596 (2010).
[125] A. Thibon, V. C. Pierre, “Principles of responsive lanthanide-based luminescent probes for cellular imaging”, Anal. Bioanal. Chem., 394:107–120 (2009).
[126] R. Kolesov, et al., “Optical detection of a single rare-earth ion in a crystal”, Nat. Commun., 3: 1029 (2012).
[127] J.-C. G. Bünzli, S. V. Eliseeva, “Basics of lanthanide photophysics In Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects”, P. Hänninen, H. Härmä, Eds.; Springer-Verlag, Berlin, (2010).
[128] A. Martinez, et al., “Green and red upconverted emission of hydrothermal synthesized Y2O3: Er3+–Yb3+ nanophosphors using different solvent ratio”, Mater. Sci. Eng., B, 174:164-168 (2010).
[129] A. Patra, et al., “Effect of crystal nature on upconversion luminescence in Er3+: ZrO2 nanocrystals”, Appl. Phys. Lett., 83: 284-286 (2003).
[130] K. Soga, et al., “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide”, J. Appl. Phys. 93: 2946-2951 (2003).
[131] L. Laversenne, et al., “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3 Opt. Mater. 16: 475-483 (2001).
[132] A. Ivaturi, et al., “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices”, J. Appl. Phys., 114: 013505 (2013).
[133] G. Mialon, et al., “High up-conversion efficiency of YVO4: Yb, Er nanoparticles in water down to the single-particle level”, J. P. J. Phys. Chem. C, 114: 22449-22454 (2010).
[134] G. Kumar, et al., “Synthesis and spectroscopy of color tunable Y2O2S:Yb3+, Er3+ phosphors with intense emission”, J. Alloys Compd., 513: 559-565 (2012).
[135] Y. Li, X. T. Wei, M. J. Yin, “Synthesis and Upconversion Luminescent Properties of Er3+ Doped and Er3+–Yb3+ Codoped GdOCl Powders”, Alloys Compd., 509: 9865-9868 (2011).
[136] M. J. Weber, “Probabilities for Radiative and Non radiative Decay of Er3+ in LaF3”, Phys. Rev., 157: 262 – 272 (1967).
[137] K. Soga, et al., “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide J. Appl. Phys. 93, 2946 (2003).
[138] A. Martinez, et al., “Green and red upconverted emission of hydrothermal synthesized Y2O3: Er3+–Yb3+ nanophosphors using different solvent ratio”, Mater. Sci. Eng., B, 174:164-168 (2010).
[139] Q.Q. Dou, Y. Zhang, “Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping”, Langmuir 27, 13236 (2011).
[140] E. Hutter, J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance”, Adv. Mater., 16: 1685-1706 (2004).
[141] J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission”, Anal. Biochem., 337: 171-194 (2005).
[142] K. Aslan, et al., “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films”, Anal. Chem., 80: 7304-7312 (2008).
[143] H. Zhang, et al., “Highly Spectral Dependent Enhancement of Upconversion Emission with Sputtered Gold Island Films”, Chem. Commun., 47: 979-981 (2011).
[144] M. Saboktakin, et al., “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation”, ACS Nano, 6: 8758-8766 (2012).
[145] W. H. Zhang, F. Ding, S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF₄:Yb³⁺/Er³⁺ nanocrystal by 3D plasmonic nano-antennas”, Adv. Mater., 24: Op236-241 (2012).
[146] N. N. Tu, L. Y. Wang, “Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection”, Chem. Commun., 49: 6319-6321 (2013).
[147] P. Zhao, “Facile synthesis of upconversion luminescent mesoporous Y2O3:Er microspheres and metal enhancement using gold nanoparticles”, RSC Adv., 2: 10592-10597 (2012).
[148] P. Kannan, et al., “Au nanorod decoration on NaYF4: Yb/Tm nanoparticles for enhanced emission and wavelength-dependent biomolecular sensing”, ACS Appl. Mater. Inter., 5: 3508-3513 (2013).
[149] W. Feng, L. D. Sun, C. H. Yan, “Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method”, Chem. Commun., 7: 4393-4395 (2009).
[150] S. Schietinger, et al., “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals”, Nano Lett., 10: 134-138 (2010).
[151] L. Sudheendra, et al., “Plasmonic enhanced emissions from cubic NaYF4:Yb: Er/Tm nanophosphors”, Chem. Mater., 23: 2987-2993 (2011).
[152] M. Pollnau, et al., “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems”, Phys. Rev. B, 61:3337 (2000).
[153] M.Wang, et al., “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles”, ACS Nano 3: 1580–1586 (2009).
[154] J. Pichaandi, et al., “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging”, J. Phys. Chem. C, 115: 19054–19064 (2011).
[155] V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology”, Nature Methods 7: 603–614 (2010).
[156] Z. Li, Y. Zhang, S. Jiang, “Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles”, Adv. Mater., 20: 4765–4769 (2008).
[157] N. J. J. Johnson, et al., “Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4: Yb3+/Er3+ nanoparticles”, Nanoscale, 2: 771-777 (2010).
[158] C. Vinegoni, et al., “Transillumination fluorescence imaging in mice using biocompatible upconverting nanoparticles”, Opt. Lett. 34: 2566-2568 (2009).
[159] S. Wu, et al., “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals”, Proc. Natl. Acad. Sci. U. S. A. 106, 10917-10921 (2009).
[160] P. Svenmarker, C. T. Xu, S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging”, Opt. Lett. 35, 2789-2791 (2010).
[161] R. Weissleder, et al., Molecular imaging: principles and practice, (2010).
[162] M. Yu, et al., “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors”, Anal. Chem., 81: 930-935 (2009).
[163] M. Nyk, et al., “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors”, Nano Lett., 8: 3834-3838 (2008).
[164] C. C. Mi, et al., “Novel microwave-assisted solvothermal synthesis of NaYF4:Yb,Er upconversion nanoparticles and their application in cancer cell imaging”, Langmuir, 27: 14632-14637 (2011).
[165] H. Hu, et al., “Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels”, Chem. Mater., 20: 7003-7009 (2008).
[166] F. Vetrone, et al., “Intracellular Imaging of Hela Cells by Non-Functionalized NaYF4:Er3+, Yb3+ Upconverting Nanoparticles”, Nanoscale, 2: 495-498 (2010).
[167] R. Naccache, et al., “Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticle”, Chem. Mater., 21: 717-723 (2009).
[168] S. J. Zeng, et al., “Dual-modal fluorescent/magnetic bioprobes based on small sized upconversion nanoparticles of amine-functionalized BaGdF5:Yb/Er”, Nanoscale, 4: 5118 (2012).
[169] N. M. Idris, et al., “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles”, Biomaterials, 30: 5104-5113 (2009).
[170] L. Cheng, et al., “Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles”, Nano Res., 3: 722-732 (2010).
[171] C. Wang, et al., “Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles”, Biomaterials, 33: 4872-4881 (2012).
[172] W. J. Zhang, et al., “Facile preparation of well-defined hydrophilic core-shell upconversion nanoparticles for selective cell membrane glycan labeling and cancer cell imaging”, Anal. Chem., 86: 482-489 (2014).
[173] D. K. Chatterjee, L. S. Fong, Y. Zhang, “Nanoparticles in photodynamic therapy: an emerging paradigm”, Adv. Drug Delivery Rev. 60: 1627-1637 (2008).
[174] C. Wang, L. Cheng, Z. Liu, “Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics”, Theranostics, 3: 317-330 (2013).
[175] P. Zhang, et al., “Versatile photosensitizers for photodynamic therapy at infrared excitation”, J. Am. Chem. Soc., 129: 4526-4527 (2007).
[176] S. L. Gai, et al., “Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers”, Adv. Funct. Mater., 20: 1166-1172 (2010).
[177] http://www.gwinstek.com/Power_Supply/Single_Channel_DC_Power_Supplies/GPS-Series.
[178] DePaola N, et al., “Electrical impedance of cultured endothelium under fluid flow”, Ann. Biomed. Eng., 29: 648–656 (2001).
[179] http://biophysics.com/flow.php
[180] http://www.jeol.co.jp/en/products/detail/JSM-7600F.html
[181] NOF National Osteoporosis Foundation (NOF), Advances in Osteoporosis Prevention, Diagnosis and Treatment Presented at 7th (2007). http://nof.org/news/185. (Accessed: 4th September 2014).
[182] D. F. Emery, H. J. Clarke, M. L. Grover, “Stanmore total hip replacement in younger patients: review of a group of patients under 50 years of age at operation”, J. Bone Joint Surg. Br., 79: 240-246 (1997).
[183] G. Mendonca, et al., “Advancing dental implant surface technology--from micron- to nanotopography”, Biomaterials, 29: 3822-3835 (2008).
[184] K. Wang, “The use of Titanium for medical applications in the USA”, Mat. Sci. Eng. A, 213: 134-137 (1996).
[185] E. Heissler, et al., “Custom-made cast Titanium implants produced with CAD/CAM for the reconstruction of cranium defects”, Int J. Oral Maxillofac. Surg., 27:334-338 (1998).
[186] L. Peng, et al., “The effect of TiO2 nanotube on endothelial function and smooth muscle proliferation”, Biomaterials, 30: 1268-1272 (2009).
[187] P. Hoyer, et al., “Formation of Titanium Dioxide Nanotube Array”, Langmuir, 12:1411-1413 (2004).
[188] P. T. de Oliveira, A. Nanci, “Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells”, Biomaterials, 25: 403-413 (2004).
[189] C. Chang, E. B. Slamovich, T. J. Webster, “Enhanced osteoblast functions on anodized titanium with nanotube-like structures”, J. Biomed. Mater. Res A., 85: 157-166 (2008).
[190] H. N. Kim, et al., “Nanotopography-guided tissue engineering and regenerative medicine”, Adv. Drug Deliv. Rev., 65:536–558 (2013).
[191] D. H. Kim, et al., “Matrix nanotopography as a regulator of cell function”, J. Cell Biol.,197: 351–360 (2012).
[192] X. Zhu, et al., “Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces”, Cells Tissues Organs., 178: 13-22 (2004).
[193] E. E. Swan, et al., “Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture”, J. Biomed. Mater. Res A., 72: 288-295 (2005).
[194] T. J. Webster, W. Siegel, R. Bizios, “Osteoblast adhesion on nanophase ceramics”, Biomaterials., 20: 1221-1227 (1999).
[195] C. D. W. Wilkinson, et al., “The use of materials patterned on a nano- and micro-metric scale in cellular engineering”, Mater. Sci. Eng.,19: 263-269 (2002).
[196] J. J. Norman, T. A. Desai, “Methods for fabrication of nanoscale topography for tissue engineering scaffolds”, Ann. Biomed. Eng., 34: 89-101 (2006).
[197] G. J. Soler-Illia, et al., “Critical aspects in the production of periodically ordered mesoporous titania thin films”, Nanoscale., 4: 2549-2566 (2012).
[198] W. R. Legant, et al., “Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions”, Proc. Nat. Acad. Sci.,110: 881-886 (2013).
[199] F. Pampaloni, E. G. Reynaud, E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue”, Nat. Rev., 8: 839-845 (2007).
[200] E. Cukierman, et al., “Taking cell-matrix adhesions to the third dimension”, Science., 294: 1708–1712 (2001).
[201] S. Oh, et al., “Stem cell fate dictated solely by altered nanotube dimension”, Proc. Nat. Acad. Sci., 106: 2130-2135 (2009).
[202] K. C. Popat, et al., “Titania Nanotubes: A Novel Platform for Drug-Eluting Coatings for Medical Implants?”, Small., 3: 1878-1881 (2007).
[203] M. G. Bellino, et al., “Controlled adhesion and proliferation of a human osteoblastic cell line by tuning the nanoporosity of titania and silica coatings”, Biomater. Sci., 1: 186-189 (2013).
[204] E. Palin, H. Liu, T. J. Webster, “Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation”, Nanotechnology, 16: 1828–1835 (2005).
[205] B. L. Yang, et al., “Cell Adhesion and Proliferation Mediated Through the G1 Domain of Versican”, J. Cell Biochem., 72: 210–220 (1999).
[206] A. J. Dulgar-Tulloch, R. Bizios, R. W. Siegel, “Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography”, J. Biomed. Mater. Res A., 90A: 586-594 (2009).
[207] V. Zwilling, M. Aucouturier, E. Darque-Ceretti,” Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochim. Acta. 45: 921-929 (1999).
[208] J. Kelly,”The influence of fluoride ions on the passive dissolution of titanium”, Electrochim. Acta., 24: 1273-1282 (1979).
[209] D. Gong, et al.,” Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res., 16: 3331-3334 (2001).
[210] J. R. Porter, T. T. Ruckh, K. C. Popat,”Bone tissue engineering: a review in bone biomimetics and drug delivery strategies”, Biotechnol. Prog., 25: 1539-1560 (2009).
[211] J. He, et al., “The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation”, J. Mater. Sci. Mater. Med.,19: 3465-3472 (2008).
[212] L. Marinucci, et al., “Effects of hydroxyapatite and biostite on osteogenic induction of hMSC”, Ann. Biomed. Eng., 38: 640-648 (2010).
[213] S. Huang, D. E. Ingber, “The structural and mechanical complexity of cell-growth control”, Nat. Cell. Biol.,1: E131–E138 (1999).
[214] E. H. J. A. Danen, A. Sonnenberg, “Integrins in regulation of tissue development and function”, J. Pathol., 200: 471–480 (2003).
[215] D. A. Lauffenburger, A. F. Horwitz, “Cell migration: A physically integrated molecular process”, Cell, 84: 359–369 (1996).
[216] A. J. Garcia, N. D. Gallant, “Stick and grip: Measurement systems and quantitative analyses of integrin-mediated cell adhesion strength”, Cell Biochem. Biophys., 39: 61–73 (2003).
[217] A. Bershadsky, M. Kozlov, B. Geiger, “Adhesion-mediated mechanosensitivity: A time to experiment, and a time to theorize”, Curr. Opin. Cell Biol.,18: 472–481 (2006).
[218] A. Mathur, et al., “The role of feature curvature in contact guidance”, Acta Biomater., 8: 2595–2601 (2012).
[219] J. Hu, et al., “Enhanced cell adhesion and alignment on micro-wavy patterned surfaces”, Plos One, 9: e104502 (2014).
[220] S. I. Fraley, et al., “A distinctive role for focal adhesion proteins in three dimensional cell motility”, Nat. Cell Biol., 12: 598–604 (2010).
[221] X. D. Ren, et al., “Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover”, J. Cell Sci.,113:3673–3678 (2000).
[228] D. J. Webb, et al., “FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly”, Nat. Cell Biol., 6:154–161 (2004).
[223] S. P. Palecek, et al., “Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness”, Nature, 385: 537–540 (1997).
[224] J. Kim, et al., “Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells”, Sci Rep., 3: 3552 (2013).
[225] C. M. Lo, et al., “Non muscle myosin IIB is involved in the guidance of fibroblast migration”, Mol. Biol. Cell, 15: 982–989 (2004).
[226] Saretzki G, et al.,”Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells”, Stem Cells 26: 455–464 (2008).
[227] J. Zhang, et al., “Creating new fluorescent probes for cell biology”, Nat. Rev. Mol. Cell Biol., 3: 906-918 (2002).
[228] E. Betzig, et al., “Imaging intracellular fluorescent proteins at nanometer resolution”, Science, 313: 1642-1645 (2006).
[229] W. Jiang, et al., “Nanoparticle-mediated cellular response is size-dependent”, Nat. Nanotechnol., 3: 145-150 (2008).
[230] D. R. Larson, et al., “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo”, Science, 300: 1434-1436 (2003).
[231] R. Kumar, et al., “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals”, Adv. Funct. Mater., 19: 853-859 (2009).
[232] M. Haase, H. Schafer, “Upconverting Nanoparticles”, Angew. Chem., Int. Ed., 50: 5808-5829 (2011).
[233] Y. Liu, et al., “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection”, Nanoscale, 5: 1369-1384 (2013).
[234] J. M. Luther, et al., “Localized surface plasmon resonances arising from free carriers in doped quantum dots”, Nat. Mater., 10: 361-366 (2011).
[235] A. L. Feng, et al., “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers”, Sci. Rep., 5: 7779 (2015).
[236] D. M. Wu, et al., “Plasmon-enhanced upconversion” J. Phys. Chem. Lett., 5: 4020-4031 (2014).
[237] M. Eichailbum, K. Rademann, “Plasmonic Enhancement or Energy Transfer? On the Luminescence of Gold-, Silver-, and Lanthanide-Doped Silicate Glasses and Its Potential for Light-Emitting Devices”, Adv. Funct. Mater., 19: 2045-2052 (2009).
[238] E. Verhagen, L. Kuipers, A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence”, Opt. Express, 17: 14586-14598 (2009).
[239] M. Saboktakin, et al., “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays”, ACS Nano, 7: 7186-7192 (2013).
[240] C. Graf, et al., “A general method to coat colloidal particles with silica”, Langmuir, 19: 6693-6700 (2003).
[241] F. Zhang, et al., “Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles”, J. Am. Chem. Soc., 132: 2850-2851 (2010).
[242] T. R. Jensen, G. C. Schatz, R. P. Van Duyne, “Nanosphere Lithography:  Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling”, J. Phys. Chem. B, 103: 2394-2401 (1999).
[243] M. D. Malinsky, et al., “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers”, J. Am. Chem. Soc., 123: 1471-1482 (2001).
[244] G. Kalyuzhny, et al., “Carbohydrate-Modified LSPR Transducers for Protein Recognition”, Chem. Eur. J., 8: 3850-3857 (2002).
[245] J. Shumaker-Parry, H. S. Rochholz and M. Kreiter, “Fabrication of crescent-shaped optical antennas”, Adv. Mater., 17: 2131-2134 (2005).
[246] V. Myroshnychenko, et al., “Modelling the optical response of gold nanoparticles”, Chem. Soc. Rev., 37: 1792-1805 (2008).
[247] J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications”, Anal. Biochem., 298: 1-24 (2001).
[248] P. Yuan, et al., “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging”, Nanoscale, 4: 5132-5137 (2012).
[249] G. Y. Chen, et al., “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals”, Phys. Rev. B, 75: 195204 (2007).
[250] J. F. Suyver, et al., “Anomalous power dependence of sensitized upconversion luminescence”, Phys. Rev. B, 71: 125123 (2005).
[251] W. Xu, Z. G. Zhang, W. W. Cao, “Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4”, Opt. Lett., 37: 4865-4867 (2012).
[252] H. Sun, et al., “Temperature-dependent morphology evolution and surface plasmon absorption of ultrathin gold island films”, J. Phys. Chem., 116: 9000-9008 (2012).
[253] E. Dulkeith, et al., “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects”, Phys. Rev. Lett., 89: 203002 (2002).
[254] J. R. Lakowicz, et al., “Plasmon-controlled fluorescence: A new detection technology”, Proc. SPIE Int. Soc. Opt. Eng., 6099: 609909 (2006).
[255] H. P. Paudel, et al., “Enhancement of Upconversion Luminescence Using Engineered Plasmonic Gold Surfaces”, J. Phys. Chem. C., 115: 19028 (2011).
[256] Y. L. Wang, et al., “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals”, Sci. Rep., 5: 10196 (2015).
[257] W. Ge, et al., “Distance Dependence of Gold-Enhanced Upconversion luminescence in Au/SiO2/Y2O3:Yb3+, Er3+ Nanoparticles”, Theranostics, 3: 282-288 (2013).
[258] A. Priyam, N. M. Idris, Y. Zhang, “Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging”, J. Mater. Chem., 22: 960 (2011).
[259] C. Zhang, J. Lee, “Synthesis of Au Nanorod@Amine-Modified Silica@Rare-Earth Fluoride Nanodisk Core–Shell–Shell Heteronanostructures”, J. Phys. Chem. C, 117: 15253-15259 (2013).
[260] J. Shen, et al., “Influence of SiO2 layer thickness on plasmon enhanced upconversion in hybrid Ag/SiO2/NaYF4:Yb, Er, Gd structures”, Appl. Surf. Sci., 270: 712-717 (2013).
[261] Y. Wu, et al., “Silver nanoparticles enhanced upconversion luminescence in Er3+/Yb3+ codoped bismuth-germanate glasses”, J. Phys. Chem. C, 115, 25040-25045 (2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊