|
[1] https://www.census.gov/newsroom/releases/archives/2010_census/cb11-cn192.html [2] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Report, 48: 53-229 (2003). [3] A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis”, J. Photochem. Photobiol. C, 1: 1-21 (2000). [4] A. Kudo, Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev., 38: 253-278 (2009). [5] S. K. Mohapatra, et al., “Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-x Cx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode”, J. Phys. Chem. C, 111: 8677-8685 (2007). [6] S. -D. Mo, W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite”, Phy. Rev. B, 51:13023 (1995). [7] J.-G. Li, T. Ishigaki, X. Sun, “Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions: Phase-Selective Synthesis and Physicochemical Properties”, J. Phys. Chem. C, 111: 4969-4976 (2007). [8] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics”, New York (Wiley) 1976. [9] A. Aladjem, et al.,”Electron-beam crystallization of anodic oxide films”, Electrochim. Acta, 15: 663-671 (1970). [10] O. K. Varghese, et al.,“Crystallization and high-temperature structural stability of titanium oxide nanotube arrays”, J. Mater. Res., 18: 156-165 (2003). [11] L. Young,”Anodic Oxide Films”, New York (Plenum) (1961). [12] R. Memming, “Semiconductor Electrochemistry”, Weinheim (Wiley) (2001). [13] H. Habazaki, et al., “Ionic Mobilities in Amorphous Anodic Titania”, J. Electrochem. Soc., 149: B70 (2002). [14] L. Kavan, M. Grätzel, J. Rathousky, A. Zukal, “Nanocrystalline TiO2 (anatase) electrodes: surface morphology, adsorption, and electrochemical properties”, J. Electrochem. Soc., 143: 394-400 (1996). [15] N. Serpone, E. Pelizzetti, “Photocatalysis - Fundamentals and Applications”, New York (Wiley) (1989). [16] E. D. John, “Bone bonding at natural and biomaterial surfaces”, Biomaterials, 28: 5058-5067 (2007). [17] K. Wang, “The use of titanium for medical applications in the USA”, Mat. Sci. Eng. A Struct., 213: 134-137 (1996). [18] M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications”, J. Mech. Behav. Biomed., 1: 30-42 (2008). [19] R. Van Noort, “Titanium: The implant material of today”, Journal of Materials Science, 22: 3801-3811 (1987). [20] P. Tengvall, I. Lundström, “Physico-chemical considerations of titanium as a biomaterial”, Clin. Mater., 9: 115-134 (1992). [21] D. Cáceres, et al., “Nanomechanical properties of surface-modified titanium alloys for biomedical applications Acta Biomater., 4: 1545-1552 (2008). [22] E. A. B. Effah, P. D. Bianco, P. Ducheyne, “Crystal structure of the surface oxide layer on titanium and its changes arising from immersion”, J Biomed. Mat. Res., 29: 73-80 (1995). [23] M. Long, H. J. Rack, “Titanium alloys in total joint replacement--a materials science perspective”, Biomaterials, 19: 1621-1639 (1998). [24] S. Speroni, et al., “Hard and soft tissue augmentation in implant surgery: a case report”. Minerva Stomatol., 60: 123-131 (2011). [25] G. Mendonca, et al., “Advancing dental implant surface technology--from micron- to nanotopography”, Biomaterials, 29: 3822-3835 (2008). [26] S. J. Heo, et al., “Stability measurements of craniofacial implants by means of resonance frequency analysis. A clinical pilot study, J. Laryngol Otol, 112: 537-542 (1998). [27] L. Peng, et al., “The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation”, Biomaterials, 30: 1268-72 (2009). [28] J. Tillander, et al., “Osseointegrated titanium implants for limb prostheses attachments: infectious complications”, Clin. Orthop. Relat. Res., 468: 2781-27888 (2010). [29] C. Smith, et al., “Engineering a titanium and polycaprolactone construct for a biocompatible interface between the body and artificial limb”, Tissue Eng Part A, 16: 717-724 (2010). [30] D. T. Luttikhuizen, M. C. Harmsen, M. J. Van Luyn, “Engineering a titanium and polycaprolactone construct for a biocompatible interface between the body and artificial limb”, Tissue Eng. Part A, 12: 1955-1970 (2006). [31] NOF National Osteoporosis Foundation (NOF), Advances in Osteoporosis Prevention, Diagnosis and Treatment Presented at 7th (2007). http://nof.org/news/185. (Accessed: 4th September 2014). [32] D. F. Emery, H. J. Clarke, M. L. Grover, “Stanmore total hip replacement in younger patients: review of a group of patients under 50 years of age at operation”, J. Bone Joint Surg. Br., 79: 240-246 (1997). [33] T. J. Webster, J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo”, Biomaterials, 25: 4731-4739 (2004). [34] H. N. Kim, et al., “Nanotopography-guided tissue engineering and regenerative medicine”, Adv. Drug Deliv. Rev., 65: 536–558 (2013). [35] X. Chen, S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chem. Rev., 107: 2891-2959 (2007) [36] E. E. Swan, et al., “Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture”, J. Biomed. Mater. Res A., 72:288-295 (2005). [37] J. W. Diggle, T. C. Downie, C. W. Goulding, “Anodic oxide films on aluminum”, Chem. Rev., 69: 365-405 (1969). [38] J. W. Schultze, M. M. Lohrengel, “Stability, reactivity and breakdown of passive films. Problems of recent and future research”, Electrochim. Acta, 45: 2499-2513 (2000). [39] M. M. Lohrengel, “Thin anodic oxide layers on aluminium and other valve metals: High-field regime”, Mater. Sci. & Eng. Reports, R11: 243-294 (1993). [40] R. Beranek, H. Hildebrand, P. Schmuki, “Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes”, Electrochem. Sol. State Lett., 6: B12 (2003). [41] L. V. Taveira, et al., “Impedance Behavior of TiO2 Nanotubes Formed by Anodization in NaF Electrolytes”, J. Electrochem. Soc., 153: B137 (2006). [42] Q. Cai, et al., “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation”, J. Mater. Res., 20: 230-235 (2005). [43] V. M. Prida, et al., “Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays”, J. Magnetism & Magnetic. Mater., 316: 110-113 (2007) [44] H. Tang, et al., “Electrical and optical properties of TiO2 anatase thin films”, J. Appl. Phys., 75: 2042-2047 (1994). [45] R. Beranek, et al., “Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes”, App. Phy.Lett., 87: 243114- 243116 (2005). [46] A. L. Linsebigler, G. Lu, J. T. Yates Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., 95: 735-758 (1995). [47] D. Chianca de Mouraa, et al., “Electrochemical degradation of Acid Blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode”, Environmental Nanotechnology, Monitoring & Management, 5: 13 (2016) [48] H. Gerischer, H. Tributsch, “Elektrochemische Untersuchung der spektralen Sensibilisierung von ZnO-Einkristallen”, Ber. Bunsenges. Phys. Chem., 72: 437-445 (1968). [49] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353: 737-740 (1991). [50] M. Grätzel, “Dye-sensitized solar cells”, J. Photochem. Photobiol. C, 4: 145-153 (2003). [51] S. Bauer, S. Kleber, P. Schmuki, “TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes”, Electrochem. Commun., 8: 1321-1325 (2006). [52] C. VonWilmowsky, et al., “In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig”, J. Biomed. Mater. Res. Part B, 89: 165-171 (2009). [53] J. Park, et al., “Nanosize and vitality: TiO2 nanotube diameter directs cell fate”, Nano Lett., 7: 1686-1691 (2007). [54] K. C. Popat, et al., “Influence of engineered titania nanotubular surfaces on bone cells”, Biomaterials, 28: 3188-3197 (2007). [55] K. C. Popat, et al., “Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes”, Biomaterials, 28: 4880-4888 (2007). [56] N. K. Shrestha, et al., “Magnetically Guided Titania Nanotubes for Site‐Selective Photocatalysis and Drug Release”, Angew. Chem., 121: 969-972 (2009). [57] Y. Y. Song, et al., “Voltage-induced payload release and wettability control on TiO2 and TiO2 nanotubes”, Angew. Chem. Int. Ed., 49: 351-354 (2010). [58] Y. Y. Song, et al., “Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system”, J. Am. Chem. Soc., 131: 4230-4232 (2009). [59] I. D. Kim, et al., “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers”, Nano Lett., 6: 2009-2013 (2006). [60] O. K. Varghese, et al., “Hydrogen sensing using titania nanotubes”, Sens. Actuators B, 93: 338-344 (2003). [61] H. Wang, et al., “A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film”, Sensors, 4:16423-16433 (2014). [62] R. Hahn, et al., “Semimetallic TiO2 nanotubes”, Angew. Chem. Int. Ed., 48, 7236-7239 (2009). [63] B. Alberts, et al., “Molecular Biology of the Cell”, Fourth Edition. 2002 : Garland Science. [64] H. K. Kleinman, D. Philip, and M. P. Hoffman, “Role of the extracellular matrix in morphogenesis”, Curr Opin Biotechnol 14:526-532 (2003). [65] V. Ottani, et al., “Hierarchical structures in fibrillar collagens”, Micron 33:587-596 (2002). [66] M. van der Rest and R. Garrone, “Collagen family of proteins”, Faseb Journal 5:2814-2823 (1991). [67] E. W. Raines, “The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease”, Int. J. Exp.Path., 81:173-182 (2000). [68] A. Ratcliffe, “Tissue engineering of vascular grafts”, Matrix Biology 19:353-357 (2000). [69] G. J. Laurent, et al., “Regulation of matrix turnover: fibroblasts, forces, factors and fibrosis”, Biochemical Society Transactions 035:647-651 (2007). [70] E. White, F. Baralle, A. Muro, “New insights into form and function of fibronectin splice variants”, The Journal of Pathology 216:1-14 (2008). [71] R. O. Hynes, “Fibronectins”, Springer-Verlag: New York (1990). [72] W. Zingg, et al., “Effect of surface roughness on platelet adhesion under static and under flow conditions”, Can J Surg., 25:16-19 (1982). [73] L. E. McNamara, et al., “Nanotopographical control of stem cell differentiation”, J Tissue Eng., 18:120623 (2010). [74] N. Xia, et al.,”Human mesenchymal stem cells improve the neurodegeneration of femoral nerve in a diabetic foot ulceration rats”, Neurosci. Lett., 597: 84-9 (2015). [75] Z. Huang, et al.,”Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate”, Mater. Sci. Eng C,. 50: 160-72 (2015). [76] M. Sila-Asna, et al.,”Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell”, Kobe J Med Sci, 53: 25-35 (2007). [77] Oh, S., et al., “Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes”, J. Biomed. Mater. Res. A, 78: 97-103 (2006). [78] Pautke, C., et al., “Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts”, Anticancer Res, 24:3743-3748 (2004). [79] A. Gyorgyey, et al., “Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material”, Mater. Sci. Eng. C Mater. Biol. Appl, 33: 4251-4259 (2013). [80] M. Neufurth, et al., “Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells”, Biomaterials, 35:8810-8819 (2014). [81] S. C. Hsu, et al., “Crude extract of Rheum palmatum inhibits migration and invasion of U-2 OS human osteosarcoma cells by suppression of matrix metalloproteinase-2 and -9. BioMedicine”, 3:120-129 (2013). [82] A. Billiau, et al., “Human interferon: mass production in a newly established cell line, MG-63”, Antimicrob Agents Chemother, 12: 11-15 (1977). [83] M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley-VCH Verlag GmBH & Co. KGaA, Weinheim, 2011). [84] J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Third Edition ed.; Springer: Baltimore, MD, 2006; p 955. [85] J. F. Suyver, et al.,”Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+”, Journal of Luminescence, 117: 1-12 (2006). [86] H. Suzuki, I. Y. S. Lee, N. Maeda, “Laser-induced emission from dye-doped nanoparticle aggregates of poly (DL-lactide-co-glycolide)”, Int. J. Phys. Sci. 3: 42-44 (2008). [87] X. He, et al., “Preparation of luminescent Cy5 doped core-shell SFNPs and its application as a near-infrared fluorescent marker”, Talanta 72: 1519-1526 (2007). [88] Z. Y. Liu, et al., “Multi-fluorescent dye-doped SiO2/lanthanide complexes hybrid particles”, Mater. Lett. 60: 1629-1633 (2006). [89] H. Shi, et al., “Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles (RBITC-DSFNPs)-based bioprobes conjugated to Annexin V for apoptosis detection and imaging”, Nanomed. Nanotech. Biol. Med 3: 266-272 (2007). [90] L. Wang, et al., “Dual-luminophore-doped silica nanoparticles for multiplexed signaling”, Nano Letters 5: 37-43 (2005). [91] F. Gao, et al., “A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles”, Spectrochim. Acta Mol. Biomol. Spectrosc. 67: 517-521 (2007). [92] B. O. Dabbousi, et al., “(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites”, J. Phys. Chem. B 101: 9463-9475 (1997). [93] T. Nann, P. Mulvaney. “Single quantum dots in spherical silica particles. Angew. Chem. 43: 5393-5396 (2004). [94] J. R. Lakowicz, et al., “Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding”, Anal. Biochem., 280: 128-136 (2000). [95] J. O. Winter, et al., “Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells”, Adv. Mater., 13: 1673-1677 (2001). [96] W. R. Algar, et al., ‘‘Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death’’, Anal. Chem. 83: 8826-8837 (2011). [97] A. M. Smith, S. Nie.‘‘Semiconductor Nano-crystals: Structure, Properties, and Band Gap Engineering. Acc’’, Chem. Res. 43:190-200 (2009). [98] X. Zhong, et al.,‘‘Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability’’. J. Am. Chem. Soc. 125:8589-8594 (2003). [99] W. T. Carnall, et al., “A systematic analysis of the spectra of Lanthanides doped into single crystal LaF3”, J Chem. Phys., 90: 3443–3457 (1989). [100] D. R. Gamelin, H. U. Güdel, “Upconversion processes in transition metal and rare earth metal systems”, Top. Curr. Chem., 214: 1-56 (2001). [101] L. D. DeLoach, et al., “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications”, IEEE Journal of Quantum Electronics 29, 1179 - 1191 (1993). [102] X. Yu, et al., “Dopant-controlled synthesis of water soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging”, Nano. Res., 3: 51-60 (2010). [103] H. J. Liang, et al., “Upconversion luminescence in Yb3+/Tb3+-codoped monodispersed NaYF4 nanocrystals”, Optics Commun., 282: 3028-3031 (2009). [104] G. Chen, et al., “Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology, 20: 385704 (2009). [105] O. S. Wolfbeis, “An overview of nanoparticles commonly used in fluorescent bioimaging”, Chem. Soc. Rev., 44: 4743-4768 (2015. [106] F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids”, Chem. Rev., 104: 139-173 (2004). [107] G. Y. Chen, et al., “Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals”, Appl. Phys. Lett., 91: 133103 (2007). [108] D. L. Dexter, “A theory of sensitized luminescence in solids”, J. Chem. Phys., 21: 836-850 (1953). [109] M. Inokuti, F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence”, J. Chem. Phys., 43: 1978-1989 (1965). [110] K. W. Kramer, et al., “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors”, Chem. Mater., 16: 1244-1251 (2004). [111] L. Y. Wang, Y. D. Li, et al., “Single-crystal nanorods as multicolor luminescent materials”, Nano Lett., 6: 1645-1649 (2006). [112] E. De la Rosa, et al., “Strong green upconversion emission in ZrO2: Yb3+-Ho3+ nanocrystals”, Appl. Phys. Lett., 87: 241912 (2005). [113] H. Dong, L. D. Sun, C. H. Yan, “Basic understanding of the lanthanide related upconversion emissions”, Nanoscale., 5: 5703-5714 (2013). [114] R. A. Hewes, J. F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides”, Phys. Rev., 182: 427–436 (1969). [115] H. J. Liang, et al., “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals”, Opt. Commun., 282: 3028-3031 (2009).238 [116] Y. Dwivedi, S. N. Thakur, S. B. Rai, “Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix”, Appl. Phys. B: Laser Opt., 89: 45-51 (2007). [117] A. A. Pushkar, T. V. Uvarova, V. V. Kiiko, “Up-conversion multiwave (White) luminescence in the visible spectral range under excitation by IR laser diodes in the active BaY2F8:Yb3+,Pr3+ medium Opt. Spectrosc., 111: 273 (2011). [118] E.V. Shevchenko, et al., “Gold/iron oxide core/hollow-shell nanoparticles”. Adv. Mater., 20 : 4323-4329 (2008). [119] Q. Zhang and B. Yan, “Phase control of upconversion nanocrystals and new rare earth fluorides though a diffusion-controlled strategy in a hydrothermal system”. Chem. Commun., 47 : 5867-5869 (2011). [120] G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4: Yb,Tm nanocrystals with efficient up-conversion fluorescence.” Adv. Funct. Mater.,b16: 2324-2329 (2006). [121] W. Q. Luo, et al., “Er3+-doped anatase TiO2 nanocrystals: crystal-field levels, excited-state dynamics, upconversion, and defect luminescence”. Small, 7: 3046-3056 (2011). [122] R. K. Verma, A. Rai, K. Kumar, and S.B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors”. J. Lumin., 130: 1248-1253 (2010). [123] Y. W. Zhang, et al., “Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor”, J Am. Chem. Soc. 127:3260–1 (2005). [124] H. S. Mader, et al., “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging”, Curr. Opin. Chem. Biol., 14:582–596 (2010). [125] A. Thibon, V. C. Pierre, “Principles of responsive lanthanide-based luminescent probes for cellular imaging”, Anal. Bioanal. Chem., 394:107–120 (2009). [126] R. Kolesov, et al., “Optical detection of a single rare-earth ion in a crystal”, Nat. Commun., 3: 1029 (2012). [127] J.-C. G. Bünzli, S. V. Eliseeva, “Basics of lanthanide photophysics In Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects”, P. Hänninen, H. Härmä, Eds.; Springer-Verlag, Berlin, (2010). [128] A. Martinez, et al., “Green and red upconverted emission of hydrothermal synthesized Y2O3: Er3+–Yb3+ nanophosphors using different solvent ratio”, Mater. Sci. Eng., B, 174:164-168 (2010). [129] A. Patra, et al., “Effect of crystal nature on upconversion luminescence in Er3+: ZrO2 nanocrystals”, Appl. Phys. Lett., 83: 284-286 (2003). [130] K. Soga, et al., “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide”, J. Appl. Phys. 93: 2946-2951 (2003). [131] L. Laversenne, et al., “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3 Opt. Mater. 16: 475-483 (2001). [132] A. Ivaturi, et al., “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices”, J. Appl. Phys., 114: 013505 (2013). [133] G. Mialon, et al., “High up-conversion efficiency of YVO4: Yb, Er nanoparticles in water down to the single-particle level”, J. P. J. Phys. Chem. C, 114: 22449-22454 (2010). [134] G. Kumar, et al., “Synthesis and spectroscopy of color tunable Y2O2S:Yb3+, Er3+ phosphors with intense emission”, J. Alloys Compd., 513: 559-565 (2012). [135] Y. Li, X. T. Wei, M. J. Yin, “Synthesis and Upconversion Luminescent Properties of Er3+ Doped and Er3+–Yb3+ Codoped GdOCl Powders”, Alloys Compd., 509: 9865-9868 (2011). [136] M. J. Weber, “Probabilities for Radiative and Non radiative Decay of Er3+ in LaF3”, Phys. Rev., 157: 262 – 272 (1967). [137] K. Soga, et al., “Luminescent properties of nanostructured Dy3+- and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide J. Appl. Phys. 93, 2946 (2003). [138] A. Martinez, et al., “Green and red upconverted emission of hydrothermal synthesized Y2O3: Er3+–Yb3+ nanophosphors using different solvent ratio”, Mater. Sci. Eng., B, 174:164-168 (2010). [139] Q.Q. Dou, Y. Zhang, “Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping”, Langmuir 27, 13236 (2011). [140] E. Hutter, J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance”, Adv. Mater., 16: 1685-1706 (2004). [141] J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission”, Anal. Biochem., 337: 171-194 (2005). [142] K. Aslan, et al., “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films”, Anal. Chem., 80: 7304-7312 (2008). [143] H. Zhang, et al., “Highly Spectral Dependent Enhancement of Upconversion Emission with Sputtered Gold Island Films”, Chem. Commun., 47: 979-981 (2011). [144] M. Saboktakin, et al., “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation”, ACS Nano, 6: 8758-8766 (2012). [145] W. H. Zhang, F. Ding, S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF₄:Yb³⁺/Er³⁺ nanocrystal by 3D plasmonic nano-antennas”, Adv. Mater., 24: Op236-241 (2012). [146] N. N. Tu, L. Y. Wang, “Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection”, Chem. Commun., 49: 6319-6321 (2013). [147] P. Zhao, “Facile synthesis of upconversion luminescent mesoporous Y2O3:Er microspheres and metal enhancement using gold nanoparticles”, RSC Adv., 2: 10592-10597 (2012). [148] P. Kannan, et al., “Au nanorod decoration on NaYF4: Yb/Tm nanoparticles for enhanced emission and wavelength-dependent biomolecular sensing”, ACS Appl. Mater. Inter., 5: 3508-3513 (2013). [149] W. Feng, L. D. Sun, C. H. Yan, “Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method”, Chem. Commun., 7: 4393-4395 (2009). [150] S. Schietinger, et al., “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals”, Nano Lett., 10: 134-138 (2010). [151] L. Sudheendra, et al., “Plasmonic enhanced emissions from cubic NaYF4:Yb: Er/Tm nanophosphors”, Chem. Mater., 23: 2987-2993 (2011). [152] M. Pollnau, et al., “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems”, Phys. Rev. B, 61:3337 (2000). [153] M.Wang, et al., “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles”, ACS Nano 3: 1580–1586 (2009). [154] J. Pichaandi, et al., “Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging”, J. Phys. Chem. C, 115: 19054–19064 (2011). [155] V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology”, Nature Methods 7: 603–614 (2010). [156] Z. Li, Y. Zhang, S. Jiang, “Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles”, Adv. Mater., 20: 4765–4769 (2008). [157] N. J. J. Johnson, et al., “Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4: Yb3+/Er3+ nanoparticles”, Nanoscale, 2: 771-777 (2010). [158] C. Vinegoni, et al., “Transillumination fluorescence imaging in mice using biocompatible upconverting nanoparticles”, Opt. Lett. 34: 2566-2568 (2009). [159] S. Wu, et al., “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals”, Proc. Natl. Acad. Sci. U. S. A. 106, 10917-10921 (2009). [160] P. Svenmarker, C. T. Xu, S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging”, Opt. Lett. 35, 2789-2791 (2010). [161] R. Weissleder, et al., Molecular imaging: principles and practice, (2010). [162] M. Yu, et al., “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors”, Anal. Chem., 81: 930-935 (2009). [163] M. Nyk, et al., “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors”, Nano Lett., 8: 3834-3838 (2008). [164] C. C. Mi, et al., “Novel microwave-assisted solvothermal synthesis of NaYF4:Yb,Er upconversion nanoparticles and their application in cancer cell imaging”, Langmuir, 27: 14632-14637 (2011). [165] H. Hu, et al., “Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels”, Chem. Mater., 20: 7003-7009 (2008). [166] F. Vetrone, et al., “Intracellular Imaging of Hela Cells by Non-Functionalized NaYF4:Er3+, Yb3+ Upconverting Nanoparticles”, Nanoscale, 2: 495-498 (2010). [167] R. Naccache, et al., “Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticle”, Chem. Mater., 21: 717-723 (2009). [168] S. J. Zeng, et al., “Dual-modal fluorescent/magnetic bioprobes based on small sized upconversion nanoparticles of amine-functionalized BaGdF5:Yb/Er”, Nanoscale, 4: 5118 (2012). [169] N. M. Idris, et al., “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles”, Biomaterials, 30: 5104-5113 (2009). [170] L. Cheng, et al., “Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles”, Nano Res., 3: 722-732 (2010). [171] C. Wang, et al., “Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles”, Biomaterials, 33: 4872-4881 (2012). [172] W. J. Zhang, et al., “Facile preparation of well-defined hydrophilic core-shell upconversion nanoparticles for selective cell membrane glycan labeling and cancer cell imaging”, Anal. Chem., 86: 482-489 (2014). [173] D. K. Chatterjee, L. S. Fong, Y. Zhang, “Nanoparticles in photodynamic therapy: an emerging paradigm”, Adv. Drug Delivery Rev. 60: 1627-1637 (2008). [174] C. Wang, L. Cheng, Z. Liu, “Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics”, Theranostics, 3: 317-330 (2013). [175] P. Zhang, et al., “Versatile photosensitizers for photodynamic therapy at infrared excitation”, J. Am. Chem. Soc., 129: 4526-4527 (2007). [176] S. L. Gai, et al., “Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers”, Adv. Funct. Mater., 20: 1166-1172 (2010). [177] http://www.gwinstek.com/Power_Supply/Single_Channel_DC_Power_Supplies/GPS-Series. [178] DePaola N, et al., “Electrical impedance of cultured endothelium under fluid flow”, Ann. Biomed. Eng., 29: 648–656 (2001). [179] http://biophysics.com/flow.php [180] http://www.jeol.co.jp/en/products/detail/JSM-7600F.html [181] NOF National Osteoporosis Foundation (NOF), Advances in Osteoporosis Prevention, Diagnosis and Treatment Presented at 7th (2007). http://nof.org/news/185. (Accessed: 4th September 2014). [182] D. F. Emery, H. J. Clarke, M. L. Grover, “Stanmore total hip replacement in younger patients: review of a group of patients under 50 years of age at operation”, J. Bone Joint Surg. Br., 79: 240-246 (1997). [183] G. Mendonca, et al., “Advancing dental implant surface technology--from micron- to nanotopography”, Biomaterials, 29: 3822-3835 (2008). [184] K. Wang, “The use of Titanium for medical applications in the USA”, Mat. Sci. Eng. A, 213: 134-137 (1996). [185] E. Heissler, et al., “Custom-made cast Titanium implants produced with CAD/CAM for the reconstruction of cranium defects”, Int J. Oral Maxillofac. Surg., 27:334-338 (1998). [186] L. Peng, et al., “The effect of TiO2 nanotube on endothelial function and smooth muscle proliferation”, Biomaterials, 30: 1268-1272 (2009). [187] P. Hoyer, et al., “Formation of Titanium Dioxide Nanotube Array”, Langmuir, 12:1411-1413 (2004). [188] P. T. de Oliveira, A. Nanci, “Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells”, Biomaterials, 25: 403-413 (2004). [189] C. Chang, E. B. Slamovich, T. J. Webster, “Enhanced osteoblast functions on anodized titanium with nanotube-like structures”, J. Biomed. Mater. Res A., 85: 157-166 (2008). [190] H. N. Kim, et al., “Nanotopography-guided tissue engineering and regenerative medicine”, Adv. Drug Deliv. Rev., 65:536–558 (2013). [191] D. H. Kim, et al., “Matrix nanotopography as a regulator of cell function”, J. Cell Biol.,197: 351–360 (2012). [192] X. Zhu, et al., “Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces”, Cells Tissues Organs., 178: 13-22 (2004). [193] E. E. Swan, et al., “Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture”, J. Biomed. Mater. Res A., 72: 288-295 (2005). [194] T. J. Webster, W. Siegel, R. Bizios, “Osteoblast adhesion on nanophase ceramics”, Biomaterials., 20: 1221-1227 (1999). [195] C. D. W. Wilkinson, et al., “The use of materials patterned on a nano- and micro-metric scale in cellular engineering”, Mater. Sci. Eng.,19: 263-269 (2002). [196] J. J. Norman, T. A. Desai, “Methods for fabrication of nanoscale topography for tissue engineering scaffolds”, Ann. Biomed. Eng., 34: 89-101 (2006). [197] G. J. Soler-Illia, et al., “Critical aspects in the production of periodically ordered mesoporous titania thin films”, Nanoscale., 4: 2549-2566 (2012). [198] W. R. Legant, et al., “Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions”, Proc. Nat. Acad. Sci.,110: 881-886 (2013). [199] F. Pampaloni, E. G. Reynaud, E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue”, Nat. Rev., 8: 839-845 (2007). [200] E. Cukierman, et al., “Taking cell-matrix adhesions to the third dimension”, Science., 294: 1708–1712 (2001). [201] S. Oh, et al., “Stem cell fate dictated solely by altered nanotube dimension”, Proc. Nat. Acad. Sci., 106: 2130-2135 (2009). [202] K. C. Popat, et al., “Titania Nanotubes: A Novel Platform for Drug-Eluting Coatings for Medical Implants?”, Small., 3: 1878-1881 (2007). [203] M. G. Bellino, et al., “Controlled adhesion and proliferation of a human osteoblastic cell line by tuning the nanoporosity of titania and silica coatings”, Biomater. Sci., 1: 186-189 (2013). [204] E. Palin, H. Liu, T. J. Webster, “Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation”, Nanotechnology, 16: 1828–1835 (2005). [205] B. L. Yang, et al., “Cell Adhesion and Proliferation Mediated Through the G1 Domain of Versican”, J. Cell Biochem., 72: 210–220 (1999). [206] A. J. Dulgar-Tulloch, R. Bizios, R. W. Siegel, “Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography”, J. Biomed. Mater. Res A., 90A: 586-594 (2009). [207] V. Zwilling, M. Aucouturier, E. Darque-Ceretti,” Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochim. Acta. 45: 921-929 (1999). [208] J. Kelly,”The influence of fluoride ions on the passive dissolution of titanium”, Electrochim. Acta., 24: 1273-1282 (1979). [209] D. Gong, et al.,” Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res., 16: 3331-3334 (2001). [210] J. R. Porter, T. T. Ruckh, K. C. Popat,”Bone tissue engineering: a review in bone biomimetics and drug delivery strategies”, Biotechnol. Prog., 25: 1539-1560 (2009). [211] J. He, et al., “The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation”, J. Mater. Sci. Mater. Med.,19: 3465-3472 (2008). [212] L. Marinucci, et al., “Effects of hydroxyapatite and biostite on osteogenic induction of hMSC”, Ann. Biomed. Eng., 38: 640-648 (2010). [213] S. Huang, D. E. Ingber, “The structural and mechanical complexity of cell-growth control”, Nat. Cell. Biol.,1: E131–E138 (1999). [214] E. H. J. A. Danen, A. Sonnenberg, “Integrins in regulation of tissue development and function”, J. Pathol., 200: 471–480 (2003). [215] D. A. Lauffenburger, A. F. Horwitz, “Cell migration: A physically integrated molecular process”, Cell, 84: 359–369 (1996). [216] A. J. Garcia, N. D. Gallant, “Stick and grip: Measurement systems and quantitative analyses of integrin-mediated cell adhesion strength”, Cell Biochem. Biophys., 39: 61–73 (2003). [217] A. Bershadsky, M. Kozlov, B. Geiger, “Adhesion-mediated mechanosensitivity: A time to experiment, and a time to theorize”, Curr. Opin. Cell Biol.,18: 472–481 (2006). [218] A. Mathur, et al., “The role of feature curvature in contact guidance”, Acta Biomater., 8: 2595–2601 (2012). [219] J. Hu, et al., “Enhanced cell adhesion and alignment on micro-wavy patterned surfaces”, Plos One, 9: e104502 (2014). [220] S. I. Fraley, et al., “A distinctive role for focal adhesion proteins in three dimensional cell motility”, Nat. Cell Biol., 12: 598–604 (2010). [221] X. D. Ren, et al., “Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover”, J. Cell Sci.,113:3673–3678 (2000). [228] D. J. Webb, et al., “FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly”, Nat. Cell Biol., 6:154–161 (2004). [223] S. P. Palecek, et al., “Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness”, Nature, 385: 537–540 (1997). [224] J. Kim, et al., “Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells”, Sci Rep., 3: 3552 (2013). [225] C. M. Lo, et al., “Non muscle myosin IIB is involved in the guidance of fibroblast migration”, Mol. Biol. Cell, 15: 982–989 (2004). [226] Saretzki G, et al.,”Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells”, Stem Cells 26: 455–464 (2008). [227] J. Zhang, et al., “Creating new fluorescent probes for cell biology”, Nat. Rev. Mol. Cell Biol., 3: 906-918 (2002). [228] E. Betzig, et al., “Imaging intracellular fluorescent proteins at nanometer resolution”, Science, 313: 1642-1645 (2006). [229] W. Jiang, et al., “Nanoparticle-mediated cellular response is size-dependent”, Nat. Nanotechnol., 3: 145-150 (2008). [230] D. R. Larson, et al., “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo”, Science, 300: 1434-1436 (2003). [231] R. Kumar, et al., “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals”, Adv. Funct. Mater., 19: 853-859 (2009). [232] M. Haase, H. Schafer, “Upconverting Nanoparticles”, Angew. Chem., Int. Ed., 50: 5808-5829 (2011). [233] Y. Liu, et al., “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection”, Nanoscale, 5: 1369-1384 (2013). [234] J. M. Luther, et al., “Localized surface plasmon resonances arising from free carriers in doped quantum dots”, Nat. Mater., 10: 361-366 (2011). [235] A. L. Feng, et al., “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers”, Sci. Rep., 5: 7779 (2015). [236] D. M. Wu, et al., “Plasmon-enhanced upconversion” J. Phys. Chem. Lett., 5: 4020-4031 (2014). [237] M. Eichailbum, K. Rademann, “Plasmonic Enhancement or Energy Transfer? On the Luminescence of Gold-, Silver-, and Lanthanide-Doped Silicate Glasses and Its Potential for Light-Emitting Devices”, Adv. Funct. Mater., 19: 2045-2052 (2009). [238] E. Verhagen, L. Kuipers, A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence”, Opt. Express, 17: 14586-14598 (2009). [239] M. Saboktakin, et al., “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays”, ACS Nano, 7: 7186-7192 (2013). [240] C. Graf, et al., “A general method to coat colloidal particles with silica”, Langmuir, 19: 6693-6700 (2003). [241] F. Zhang, et al., “Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles”, J. Am. Chem. Soc., 132: 2850-2851 (2010). [242] T. R. Jensen, G. C. Schatz, R. P. Van Duyne, “Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling”, J. Phys. Chem. B, 103: 2394-2401 (1999). [243] M. D. Malinsky, et al., “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers”, J. Am. Chem. Soc., 123: 1471-1482 (2001). [244] G. Kalyuzhny, et al., “Carbohydrate-Modified LSPR Transducers for Protein Recognition”, Chem. Eur. J., 8: 3850-3857 (2002). [245] J. Shumaker-Parry, H. S. Rochholz and M. Kreiter, “Fabrication of crescent-shaped optical antennas”, Adv. Mater., 17: 2131-2134 (2005). [246] V. Myroshnychenko, et al., “Modelling the optical response of gold nanoparticles”, Chem. Soc. Rev., 37: 1792-1805 (2008). [247] J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications”, Anal. Biochem., 298: 1-24 (2001). [248] P. Yuan, et al., “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging”, Nanoscale, 4: 5132-5137 (2012). [249] G. Y. Chen, et al., “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals”, Phys. Rev. B, 75: 195204 (2007). [250] J. F. Suyver, et al., “Anomalous power dependence of sensitized upconversion luminescence”, Phys. Rev. B, 71: 125123 (2005). [251] W. Xu, Z. G. Zhang, W. W. Cao, “Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4”, Opt. Lett., 37: 4865-4867 (2012). [252] H. Sun, et al., “Temperature-dependent morphology evolution and surface plasmon absorption of ultrathin gold island films”, J. Phys. Chem., 116: 9000-9008 (2012). [253] E. Dulkeith, et al., “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects”, Phys. Rev. Lett., 89: 203002 (2002). [254] J. R. Lakowicz, et al., “Plasmon-controlled fluorescence: A new detection technology”, Proc. SPIE Int. Soc. Opt. Eng., 6099: 609909 (2006). [255] H. P. Paudel, et al., “Enhancement of Upconversion Luminescence Using Engineered Plasmonic Gold Surfaces”, J. Phys. Chem. C., 115: 19028 (2011). [256] Y. L. Wang, et al., “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals”, Sci. Rep., 5: 10196 (2015). [257] W. Ge, et al., “Distance Dependence of Gold-Enhanced Upconversion luminescence in Au/SiO2/Y2O3:Yb3+, Er3+ Nanoparticles”, Theranostics, 3: 282-288 (2013). [258] A. Priyam, N. M. Idris, Y. Zhang, “Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging”, J. Mater. Chem., 22: 960 (2011). [259] C. Zhang, J. Lee, “Synthesis of Au Nanorod@Amine-Modified Silica@Rare-Earth Fluoride Nanodisk Core–Shell–Shell Heteronanostructures”, J. Phys. Chem. C, 117: 15253-15259 (2013). [260] J. Shen, et al., “Influence of SiO2 layer thickness on plasmon enhanced upconversion in hybrid Ag/SiO2/NaYF4:Yb, Er, Gd structures”, Appl. Surf. Sci., 270: 712-717 (2013). [261] Y. Wu, et al., “Silver nanoparticles enhanced upconversion luminescence in Er3+/Yb3+ codoped bismuth-germanate glasses”, J. Phys. Chem. C, 115, 25040-25045 (2011).
|