跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/16 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威全
研究生(外文):TING, WEI-QUAN
論文名稱:巨量資料分析應用於網路管理
論文名稱(外文):Using Big Data Analytics in Network Management
指導教授:李仁鐘李仁鐘引用關係
指導教授(外文):LEE, ZNE-JUNG
口試委員:周碩聰莊尚平李仁鐘
口試委員(外文):CHOU, SO-TSUNGCHUANG, SHAN-PINGLEE, ZNE-JUNG
口試日期:2018-01-04
學位類別:碩士
校院名稱:華梵大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:177
中文關鍵詞:巨量資料網路管理簡單網路管理協定多元迴歸決策樹
外文關鍵詞:Big DataNetwork ManagementSimple Network Management ProtocolMultiple RegressionDecision Tree
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
世界關務組織(World Customs Organization, WCO)通過「國際貿易安全與便捷化標準架構」,行政院也規劃出相應「優質經貿網絡計畫」,由財政部關務署輔導修改通關即用報關軟體,在電子化作業流程下,報關行出現網路管理需求、資訊安全管理問題與設備效能評估。
本論文在雲端技術與巨量資料的基礎下,應用網路管理簡單網路管理協定(Simple Network Management Protocol, SNMP)與開放原始碼軟體架構報關行網路管理平台,協助管理廠商與設備、提供網路拓樸與設備狀態查詢。使用多元迴歸與決策樹將網站平台收集資料進行分析,上傳量多元迴歸分析均方根誤差(Root Mean Square Error, RMSE)為0.03334、決定係數(Coefficient of Determination, R2)為0.9994,下載量多元迴歸分析RMSE為0.24833、R2為0.99448。透過決策樹發現流量發現「設備待機」、「日常運作」與「處理器高負載」三種流量模式。
經由結果得知,網站平台能協助使用者建立管理規則與發現資安管理問題,也可作為進行設備效能評估時之參考建議。

World Customs Organization (WCO) passed the “Framework of Standards to Secure and Facilitate Global Trade (WCO SAFE)”. According to the WCO SAFE, Executive also planed “Ubiquitous Economy and Trade Network Plan”. Customs Administration revised the procedure of customs automation software and Customs broker encountered problems such as network management, information security management and the evaluation of equipment performance in electrization operational procedures.
In this thesis, a customs broker network operation center (CBNOC) is built based on software as a service (SaaS), Big Data, simple network management protocol (SNMP) and open-source software to provide equipment management, network topology, multiple regression analysis, and decision tree analysis. In multiple regressions, root mean square error (RMSE) and coefficient of determination (R2) for the flow of upload are 0.03334 and 0.9994, respectively. RMSE and R2 for the flow of download are 0.03334 and 0.9994, respectively. There are three modes, “standby,” “daily operation” and “cpu busy” that are generated from the flow results of decision tree.
From the results, CBNOC could generate decision rules and find the problems of security management for users. Moreover, it could provide the decision-making for the evaluation of equipment performance.

摘要 ............................................................................................................ I

ABSTRACT ...............................................................................................II

目錄 ......................................................................................................... III

表目錄 .................................................................................................... VII

圖目錄 .................................................................................................. VIII

一、緒論 ................................................................................................... 1

1.1 研究背景 ...................................................................................... 1

1.2 研究動機 ...................................................................................... 2

1.3 研究目的 ...................................................................................... 3

二、文獻探討 ............................................................................................ 4

2.1 雲端運算 ...................................................................................... 4

2.1.1 網路應用程式 ................................................................... 5

2.2 網路管理 ...................................................................................... 5

2.2.1 網際控制訊息協定............................................................ 6

2.2.2 簡易網路管理協定............................................................ 7

2.3 巨量資料 .................................................................................... 10

2.4 資料探勘 .................................................................................... 11

2.5 多元迴歸 .................................................................................... 11

2.6 分類迴歸樹 ................................................................................ 12

2.7 均方根誤差 ................................................................................ 13

2.8 決定係數 .................................................................................... 14

三、研究方法 .......................................................................................... 15

3.1 研究架構 .................................................................................... 15

3.2 研究工具 .................................................................................... 17

3.3 系統分析與設計 ........................................................................ 17

3.3.1 需求分析 ......................................................................... 17

3.3.2 使用案例圖 ..................................................................... 19

3.3.3 活動圖 ............................................................................. 21

3.3.4 循序圖 ............................................................................. 29

3.3.5 類別圖 ............................................................................. 37

3.4 資料來源 .................................................................................... 42

3.5 資料取得與前置處理 ................................................................ 43

3.5.1 硬體資料 ......................................................................... 43

3.5.2 流量資料 ......................................................................... 44

3.5.3 資料合併 ......................................................................... 45

3.6 欄位說明 .................................................................................... 46

3.7 遺漏值處理 ................................................................................ 48

四、實驗分析與結果 .............................................................................. 50

4.1 系統展示 .................................................................................... 50

4.1.1 加入廠商功能 ................................................................. 51

4.1.2 加入廠商資料功能.......................................................... 52

4.1.3 加入設備功能 ................................................................. 53

4.1.4 設備狀態功能 ................................................................. 54

4.1.5 多元迴歸分析結果功能 .................................................. 56

4.1.6 決策樹分析結果功能 ...................................................... 57

4.1.7 網路拓樸功能 ................................................................. 58

4.2 多元迴歸分析 ............................................................................ 59

4.2.1 上傳量預測方程式.......................................................... 59

4.2.2 下載量預測方程式.......................................................... 60

4.3 決策樹 ........................................................................................ 61

4.3.1 上傳量決策樹規則.......................................................... 61

4.3.2 下載量決策樹規則.......................................................... 66

五、結論與建議 ...................................................................................... 71

5.1 結論............................................................................................ 71

5.2 建議............................................................................................ 72

中文參考文獻 .......................................................................................... 73

英文參考文獻 .......................................................................................... 75

附錄 A ..................................................................................................... 78

附錄 B .................................................................................................... 103

附錄 C .................................................................................................... 128

附錄 D ................................................................................................... 153
中文參考文獻
[1]中央通訊社,「大容電腦等10家資訊服務業者通過新通關系統驗證」,http://www.cna.com.tw/postwrite/Detail/126137.aspx,發表日期:2013/05/15,檢索日期:2017/11/25。
[2]方世榮、張文賢,統計學導論,第六版,華泰文化事業股份有限公司,台灣台北市,2010年7月,第543-545頁。
[3]李思宏,「網頁式之網路管理資訊系統」,國立暨南國際大學資訊管理學系碩士論文,1999年1月。
[4]林子修,「嵌入式SNMP網路管理與拓樸分析系統」,國立台灣科技大學電子工程系碩士論文,2009年11月。
[5]財政部關務署,「優質經貿網絡計劃」,https://web.customs.gov.tw/News_Content.aspx?n=1F7726156BC53908&sms=62F2C4D35690CE93&s=43E064D213EABC6E,發表日期:2013/11/12,檢索日期:2017/11/25。
[6]彭文正,資料採礦-顧客關係管理暨電子行銷之應用,維科出版社,台灣台北市,2001年1月。
[7]曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯,資料探勘Data Mining,旗標出版股份有限公司,台灣台北市,2010年1月。
[8]資安人,「APT防禦技術鑑識、異常流量行為分析成亮點」,https://www.informationsecurity.com.tw/article/article_detail.aspx?aid=7883,發表日期:2014/06/16,檢索日期:2017/11/25。
[9]劉柏汎,「網路服務及資訊安全之自動化管理」,國立東華大學資訊工程學系碩士論文,2004年6月。
[10]蔡旭昇、吳采珍、邱紹誠、劉冠廷,黃名霜,「以SNMP為基礎之網頁式網路流量查詢」,第二屆離島資訊技術與應用研討會,澎湖技術學院,台灣澎湖縣,2002年6月,第139-145頁。
[11]蔡宗祐,「運用SNMP實作Switch Port管理系統」,大同大學資訊工程研究所碩士論文,2005年4月。
[12]賴瑄,「基於SNMP之資通設備能源管理之研究」,國立暨南國際大學資訊管理學系碩士論文,2015年7月。
[13]顏晟陞,「基於SNMP之Hadoop雲端運算平台」,國立暨南國際大學資訊管理學系碩士論文,2014年8月。
[14]鐘揮雄,「應用於智慧電網管理之通訊協定SIP_SNMP效能量測研究」,國立暨南國際大學資訊管理學系碩士論文,2012年7月。

英文參考文獻
[15] B. Leo, F. Jerome,‎ C.J. Stone and R.A. Olshen, Classification and Regression Trees, 1 edition, Chapman and Hall, London, UK, January 1984.
[16] C. Lidia and V. Paolo, “The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini,” The Journal of Economic Inequality, Vol. 10, Issue 3, pp.421-443, September 2012.
[17] D. Tweddle, “Logistics, security and compliance: the part to be played by Authorized Economic Operators (AEOs) and data management,” World Customs Journal, Vol. 2(1), pp. 101-105, April 2008.
[18] European Commission, “Authorized Economic Operators–GUIDELINES,” https://ec.europa.eu/taxation_customs/sites/taxation/ files/resources/documents/customs/policy_issues/customs_security/aeo_guidelines_en.pdf, publication date: 2016/03/11, access date: 2017/11/25.
[19] Gartner, “Deja VVVu: Others Claiming Gartner’s Construct for Big Data,” https://blogs.gartner.com/doug-laney/deja-vvvue-others-claiming -gartners-volume-velocity-variety-construct-for-big-data/, publication date: 2012/01/14, access date: 2017/11/25.
[20] H. Craig, TCP/IP Network Administration, 2 edition, O’Reilly Media Inc., State of California, USA, April 2000.
[21] H. Susan, “Root Mean Square Error,” http://statweb.stanford.edu/ ~susan/courses/s60/split/node60.html, publication date: 2000/11/28, access date: 2017/11/25.
[22] IDC, “The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things”, https://www.emc.com/lead ership/digital-universe/2014iview/executive-summary.htm, publication date: 2014/04/01, access date: 2017/11/25.
[23] International Business Machines Corporation (IBM), “ICMP type and code IDs,” https://www.ibm.com/support/knowledgecenter/en/SS42V S_7.2.7/com.ibm.qradar.doc/c_DefAppCfg_guide_ICMP_intro.html, access date: 2017/11/25.
[24] Internet Assigned Numbers Authority(IANA), “Internet Control Message Protocol (ICMP) Parameters,” https://www.iana.org/assign ments/icmp-parameters/icmp-parameters.xhtml, publication date: 2013/04/17, access date: 2017/11/25.
[25] Internet Engineering Task Force (IETF), “RFC 1157- A Simple Network Management Protocol (SNMP),” https://www.ietf.org/rfc /rfc1157.txt, publication date: 1990/05/31, access date: 2017/11/25.
[26] Internet Engineering Task Force (IETF), “RFC 792- Internet Control Message Protocol,” https://tools.ietf.org/html/rfc792, publication date: 1981/09/31, access date: 2017/11/25.
[27] J.K. Kim, H. S. Song, T. S. Kim, and H. K. Kim, “Detecting The Change of Customer Behavior Based on Decision Tree Analysis,” Expert Systems, Vol. 22, pp.193-205, September 2005.
[28] J.R. Richard and W.G. Michael, Data Mining: A Tutorial-Based Primer, Pearson, London, UK, March 2008.
[29] L.D. Jay, Probability and Statistics for Engineering and the Sciences, 8th edition, Cengage Learning, Boston, USA, January 2011.
[30] M. J. Berry and G. Linoff, Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, John Wiley & Sons Inc., State of New Jersey , USA, April 2011.
[31] Microsoft, “Ping,” https://technet.microsoft.com/zh-tw/library /bb490968.aspx, publication date: 2013/04/17, access date: 2017/11/25.
[32] National Institute of Standards and Technology (NIST), “SP 800-145 The NIST Definition of Cloud Computing,” https://csrc.nist.gov/ publications/detail/sp/800-145/final, publication date: 2011/09/01, access date: 2017/11/25.
[33] Net-SNMP, “The Net-SNMP Wiki,” http://net-snmp.sourceforge.net /wiki/index.php/Main_Page, publication date: 2016/09/14, access date: 2017/11/25.
[34] R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 6 edition, Pearson, London, UK, April 2007.
[35] R.M. Douglas and J.S. Kevin, Essential SNMP, 2 edition, O’Reilly Media Inc., State of California, USA, September 2005.
[36] O.R. John, G.P. Sastry, A.D. David, Applied Regression Analysis: A Research Tool, 2 edition, Springer, Berlin, Germany, April 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊