(3.85.143.239) 您好!臺灣時間:2019/05/25 11:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:林宇璿
研究生(外文):Lin, Yu-Xuan
論文名稱:濺鍍沉積(AlCrNbSiTiV)N薄膜提升刀具車削性能之研究
論文名稱(外文):A Study of High-entropy Alloys (AlCrNbSiTiV)N Thin Films to Enhance Turning Tool Performance
指導教授:許春耀許春耀引用關係
指導教授(外文):Hsu, Chun-Yao
口試委員:許春耀黃嘉和郭金國郭啟全張合
口試委員(外文):Hsu, Chun-YaoHuang, Chia-HoKuo, Chin-GuoKuo, Chil-ChyuanChang, Ho
口試日期:2018-07-11
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:69
中文關鍵詞:高熵合金(AlCrNbSiTiV)N薄膜乾式切削
外文關鍵詞:High-entropy Alloy(AlCrNbSiTiV)N FilmDry Cutting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用高功率脈衝反應磁控濺鍍,以AlCrNbSiTiV為靶材,通N2作為反應氣體,沉積高熵合金(AlCrNbSiTiV)N氮化物薄膜於瓷金刀具(TNMG160404R-UM T1200A)、SUS304不鏽鋼試片與蘇打玻璃基材,分別探討氮氬氣比例(0, 5, 10, 15, 20%)、濺鍍功率(120, 150, 180, 210, 240 W)、基材溫度(100, 150, 200, 250, 300, 350, 400℃)影響(AlCrNbSiTiV)N薄膜機械性質與微結構之影響。SEM表面形貌分析,顯示薄膜沒有空孔,沒有剝離的現象,且緊密附著於基材。
研究顯示,提升氮氬氣流量比例,薄膜沉積速率降低,薄膜硬度隨之提高;提升濺鍍功率,沉積速率明顯上升,表面型態也可看出晶粒明顯增大,且薄膜表面較為緊密,薄膜硬度也隨之提升;提升基材溫度,有助增加原子表面遷移率,提升薄膜緻密性,且晶柱明顯,但薄膜沉積速率沒有顯著改變。
(AlCrNbSiTiV)N薄膜最高硬度~2951 Hv,最低磨擦係數~0.57。(AlCrNbSiTiV)N薄膜鍍層刀具,乾式車削鉻鉬鋼DIN-50CrMo4。研究顯示,鍍層刀具可有效提升刀具壽命,及降低工件表面粗糙度。基材溫度250℃,沉積時間30 min,濺鍍功率180 W,基材偏壓-50 V,氮氬氣比例20%,顯示有較小的刀腹磨耗量及較低的工件表面粗糙度。

In this study, we used high power impulse magnetron sputtering (HIPIMS) by AlCrNbSiTiV target, and used nitrogen gas was reaction gas, then deposited a high-entropy alloy (AlCrNbSiTiV)N nitride film on a cermet tool (TNMG160404R-UM T1200A), SUS304 stainless steel and Soda glass. We discussed the ratio of nitrogen to argon (0, 5, 10, 15, 20%), sputtering power (120, 150, 180, 210, 240 W), substrate temperature (100, 150, 200, 250, 300, 350, 400℃) influence the mechanical properties and microstructure of (AlCrNbSiTiV)N films. The SEM surface morphology analysis showed that the film had no voids, no peeling phenomenon, and was closely attached to the substrate.
The research have shown that if I increased the proportion of nitrogen and argon flow, the film was became hardness increased. Then if I was increased the sputtering power, the deposition rate was increased, and the surface morphology can also be seen that the grain size has increased significantly, the film surface was more compact. In addition, we found the hardness film also improved. Then if I was raised the temperature, that the substrate can increased the surface mobility of the atomic layer. Improving the compactness of the thin film, and the crystal column is apparent, but the film deposition rate does not change significantly.
The (AlCrNbSiTiV)N film has a hardness of ~2951 Hv and a minimum friction coefficient of ~0.57. (AlCrNbSiTiV)N coating film tool, dry turning chrome molybdenum steel DIN-50CrMo4. Studies have shown that coated tools can effectively increase tool life and reduce workpiece surface roughness. The substrate temperature was 250 ℃, the deposition time was 30 min, the sputtering power was 180 W, the substrate bias was -50 V, and the nitrogen-argon ratio was 20 %. This shows that there is a small amount of flank wear and a low workpiece surface roughness.
摘要i
ABSTRACTii
誌謝iv
目錄v
表目錄vii
圖目錄viii
第一章 緒論1
1.1前言1
1.2研究目的2
第二章 文獻回顧3
2.1薄膜沉積3
2.2濺鍍原理3
2.2.1直流濺鍍5
2.2.2射頻濺鍍5
2.2.3磁控濺鍍6
2.2.4反應式濺鍍7
2.2.5高功率脈衝磁控濺鍍8
2.3薄膜成長機制與結構9
2.3.1薄膜沉積原理9
2.3.2薄膜微結構11
2.3.2.1高功率脈衝磁控濺鍍薄膜微結構13
2.4氮化物薄膜發展與研究15
2.4.1本質性氮化物硬膜16
2.4.2外延性氮化物薄膜16
2.5高熵合金17
2.5.1高熵合金的定義17
2.5.2高熵合金的特點17
2.6刀具磨損現象20
2.6.1刀具磨損的影響20
2.6.2刀具磨損類型21
2.6.2.1刀腹磨損21
2.6.2.2月牙窪磨損22
第三章 實驗方法與步驟23
3.1實驗步驟23
3.2靶材製備25
3.2.1合金組成25
3.2.2靶材規格25
3.3濺鍍設備27
3.4鍍膜準備28
3.4.1基材選擇28
3.4.2工作氣體28
3.4.3基材預處理28
3.5濺鍍處理29
3.5.1濺鍍步驟29
3.5.2濺鍍參數設計30
3.6薄膜材料特徵評價與性質分析31
3.6.1微細形狀測定儀31
3.6.2場發射掃描式電子顯微鏡(FESEM)31
3.6.3低真空電子顯微鏡33
3.6.4動態微小硬度計34
3.6.5球對盤磨耗測試儀34
3.6.6表面粗糙度量測儀35
3.7鍍膜刀具切削試驗37
第四章 結果與討論38
4.1未鍍膜刀具切削後之刀具磨耗及表面粗糙度38
4.2改變氮氬氣比例影響(AlCrNbSiTiV)N薄膜性質39
4.2.1薄膜厚度及沉積速率39
4.2.2薄膜微結構40
4.2.3硬度42
4.2.4磨耗試驗43
4.2.5刀腹磨耗與工件表面粗糙度44
4.3改變濺鍍功率影響(AlCrNbSiTiV)N薄膜性質46
4.3.1薄膜厚度及沉積速率46
4.3.2薄膜微結構47
4.3.3硬度49
4.3.4磨耗試驗50
4.3.5刀腹磨耗與工件表面粗糙度50
4.4改變基材溫度影響(AlCrNbSiTiV)N薄膜性質53
4.4.1薄膜厚度及沉積速率53
4.4.2薄膜微結構54
4.4.3硬度56
4.4.4磨耗試驗57
4.4.5刀腹磨耗與工件表面粗糙度58
第五章 結論與未來展望62
5.1結論62
5.2未來展望63
參考文獻64


[1]Sreejith, P. and B. Ngoi, Dry machining: machining of the future. Journal of materials processing technology, 2000. 101(1-3): p. 287-291.
[2]Yigit, R., E. Celik, F. Findik, and S. Koksal, Tool life performance of multilayer hard coatings produced by HTCVD for machining of nodular cast iron. International Journal of Refractory Metals and Hard Materials, 2008. 26(6): p. 514-524.
[3]刘战强, 万熠, and 周军, 高速切削刀具材料及其应用. 机械工程材料, 2006. 30(5): p. 1-4.
[4]PalDey, S. and S. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review. Materials Science and Engineering: A, 2003. 342(1-2): p. 58-79.
[5]魏仑, 梅芳华, 邵楠, 李戈扬, and 李建国, TiN/SiO2 纳米多层膜的晶体生长与超硬效应. 2005.
[6]Narasimhan, K., S.P. Boppana, and D.G. Bhat, Development of a graded TiCN coating for cemented carbide cutting tools—a design approach. Wear, 1995. 188(1-2): p. 123-129.
[7]Vaz, F., L. Rebouta, M. Andritschky, M. Da Silva, and J. Soares, Oxidation resistance of (Ti, Al, Si) N coatings in air. Surface and Coatings Technology, 1998. 98(1-3): p. 912-917.
[8]Veprek, S., M.G. Veprek-Heijman, P. Karvankova, and J. Prochazka, Different approaches to superhard coatings and nanocomposites. Thin solid films, 2005. 476(1): p. 1-29.
[9]Guo, Y., S. Ma, K. Xu, T. Bell, X. Li, and H. Dong, On the oxidation resistance of superhard Ti–Si–C–N coatings. Journal of Materials Research, 2008. 23(9): p. 2420-2428.
[10]Yamamoto, K., S. Kujime, and K. Takahara, Structural and mechanical property of Si incorporated (Ti, Cr, Al) N coatings deposited by arc ion plating process. Surface and coatings technology, 2005. 200(5-6): p. 1383-1390.
[11]Ezura, H., K. Ichijo, H. Hasegawa, K. Yamamoto, A. Hotta, and T. Suzuki, Micro-hardness, microstructures and thermal stability of (Ti, Cr, Al, Si) N films deposited by cathodic arc method. Vacuum, 2008. 82(5): p. 476-481.
[12]Endrino, J., S. Palacín, M. Aguirre, A. Gutiérrez, and F. Schäfers, Determination of the local environment of silicon and the microstructure of quaternary CrAl (Si) N films. Acta Materialia, 2007. 55(6): p. 2129-2135.
[13]Kim, S., P. Vinh, J. Kim, and T. Ngoc, Deposition of superhard TiAlSiN thin films by cathodic arc plasma deposition. Surface and Coatings Technology, 2005. 200(5-6): p. 1391-1394.
[14]Park, I.-W., S.R. Choi, J.H. Suh, C.-G. Park, and K.H. Kim, Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite films by a hybrid coating system. Thin Solid Films, 2004. 447: p. 443-448.
[15]Huang, K.-H. and J. Yeh, A study on the multicomponent alloy systems containing equal-mole elements. Hsinchu: National Tsing Hua University, 1996.
[16]Yeh, J.W., S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
[17]葉均蔚, 高熵合金的發展. 華岡工程學報, 2011(27): p. 1-18.
[18]Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys. Jom, 2013. 65(12): p. 1759-1771.
[19]鄭耿豪, 利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜, in 材料科學工程學系. 2005, 國立清華大學: 新竹市. p. 91.
[20]Lai, C.-H., S.-J. Lin, J.-W. Yeh, and S.-Y. Chang, Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology, 2006. 201(6): p. 3275-3280.
[21]Lin, C., J. Duh, and J. Yeh, Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surface and Coatings Technology, 2007. 201(14): p. 6304-6308.
[22]Lai, C.-H., K.-H. Cheng, S.-J. Lin, and J.-W. Yeh, Mechanical and tribological properties of multi-element (AlCrTaTiZr) N coatings. Surface and Coatings Technology, 2008. 202(15): p. 3732-3738.
[23]鄭耿豪, (AlCrTaTiZr)-Six-N多元氮化物鍍膜微結構、機械性質與高溫氧化行為之研究, in 材料科學工程學系. 2011, 國立清華大學: 新竹市. p. 211.
[24]田民波, 薄膜技術與薄膜材料, 台北, 五南圖書. 2007.
[25]Yoshitake, M., K. Takiguchi, Y. Suzuki, and S. Ogawa, Effects of oxygen pressure in reactive ion beam sputter deposition of zirconium oxides. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1988. 6(4): p. 2326-2332.
[26]張楷笙, 濺鍍沉積(AlCrNbSiTiV)N薄膜提昇刀具斷續切削性能之研究, in 機械工程系碩士班. 2016, 龍華科技大學: 桃園縣. p. 50.
[27]Koenig, H. and L. Maissel, Application of RF discharges to sputtering. IBM Journal of Research and Development, 1970. 14(2): p. 168-171.
[28]Davidse, P., Theory and practice of RF sputtering. Vacuum, 1967. 17(3): p. 139-145.
[29]Davidse, P. and L. Maissel, RF sputtering of insulators, in Sessions 9–13. 1967, Elsevier. p. 651-655.
[30]Davidse, P.D. and W.J. Kleinfelder, Method and apparatus for the radio frequency sputtering of dielectric materials. 1970, Google Patents.
[31]Shinoki, F. and A. Itoh, Mechanism of rf reactive sputtering. Journal of Applied Physics, 1975. 46(8): p. 3381-3384.
[32]Kouznetsov, V., K. Macak, J.M. Schneider, U. Helmersson, and I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities. Surface and coatings technology, 1999. 122(2-3): p. 290-293.
[33]Macák, K., V. Kouznetsov, J. Schneider, U. Helmersson, and I. Petrov, Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2000. 18(4): p. 1533-1537.
[34]黃士紋, 濺鍍沉積(AlCrNbSiTiV)N薄膜提昇碳化鎢刀具切削特性之研究, in 製造科技研究所. 2016, 國立臺北科技大學: 台北市. p. 0.
[35]Martin, P.M., Handbook of deposition technologies for films and coatings: science, applications and technology. 2009: William Andrew.
[36]Ehiasarian, A., R. New, W.-D. Münz, L. Hultman, U. Helmersson, and V. Kouznetsov, Influence of high power densities on the composition of pulsed magnetron plasmas. Vacuum, 2002. 65(2): p. 147-154.
[37]Tian, M. and D. Liu, Film Technology Handbook. 1991, China Machine Press, China.
[38]Venables, J., G. Spiller, and M. Hanbucken, Nucleation and growth of thin films. Reports on Progress in Physics, 1984. 47(4): p. 399.
[39]Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
[40]Messier, R., A. Giri, and R. Roy, Revised structure zone model for thin film physical structure. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984. 2(2): p. 500-503.
[41]Yao, S., Theoretical model of thin‐film deposition profile with shadow effect. Journal of Applied Physics, 1979. 50(5): p. 3390-3395.
[42]Zywitzki, O., G. Hoetzsch, F. Fietzke, and K. Goedicke, Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering. Surface and Coatings Technology, 1996. 82(1-2): p. 169-175.
[43]Thornton, J.A., The microstructure of sputter‐deposited coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): p. 3059-3065.
[44]Anders, A., A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films, 2010. 518(15): p. 4087-4090.
[45]Vepřek, S., The search for novel, superhard materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(5): p. 2401-2420.
[46]Pelleg, J., L. Zevin, S. Lungo, and N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films, 1991. 197(1-2): p. 117-128.
[47]Bunshah, R.F., Handbook of hard coatings. 2001.
[48]Jang, J. and C. Koch, The Hall-Petch relationship in nanocrystalline iron produced by ball milling. Scripta metallurgica et materialia, 1990. 24(8): p. 1599-1604.
[49]Carlton, C. and P. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Materialia, 2007. 55(11): p. 3749-3756.
[50]Takeuchi, A. and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p. 2817-2829.
[51]Choi-Yim, H. and W.L. Johnson, Bulk metallic glass matrix composites. Applied physics letters, 1997. 71(26): p. 3808-3810.
[52]Schroers, J. and W.L. Johnson, Ductile bulk metallic glass. Physical Review Letters, 2004. 93(25): p. 255506.
[53]Das, J., M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert, “Work-hardenable” ductile bulk metallic glass. Physical Review Letters, 2005. 94(20): p. 205501.
[54]Miracle, D. and O. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
[55]Zhou, Y., Y. Zhang, Y. Wang, and G. Chen, Solid solution alloys of Al Co Cr Fe Ni Ti x with excellent room-temperature mechanical properties. Applied physics letters, 2007. 90(18): p. 181904.
[56]Gao, M.C., P.D. Jablonski, J.A. Hawk, and D.E. Alman. High-Entropy Alloys: Formation and Properties. in ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. 2018. American Society of Mechanical Engineers.
[57]翁稚惠, AlCrTaTiZr氮化物薄膜附著力與抗磨耗能力之研究, in 材料科學工程學系. 2007, 國立清華大學: 新竹市. p. 89.
[58]Tiwari, G., Modification of Richard's rule and correlation between entropy of fusion and allotropic behaviour. Metal Science, 1978. 12(7): p. 317-320.
[59]Zheng, S. and S. Wang, Elastic properties of face-centered cubic, body-centered cubic and hexagonal high entropy alloys by MaxEnt approach. Materials Research Express, 2018.
[60]劉庭瑋, 多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研究. 清華大學材料科學工程學系學位論文, 2009: p. 1-133.
[61]Shi, Y., B. Yang, and P.K. Liaw, Corrosion-resistant high-entropy alloys: a review. Metals, 2017. 7(2): p. 43.
[62]陳宗聲, Al-Co-Cr-Fe-Ni 高熵合金晶粒細化及機械性質之研究. 清華大學材料科學工程學系學位論文, 2010: p. 1-172.
[63]Klocke, F. and G. Eisenblätter, Dry cutting. Cirp Annals, 1997. 46(2): p. 519-526.
[64]Diniz, A.E. and R. Micaroni, Cutting conditions for finish turning process aiming: the use of dry cutting. International Journal of Machine Tools and Manufacture, 2002. 42(8): p. 899-904.
[65]賴思維, 以反應式直流濺鍍法製備 AlBCrSiTi 高熵氮化物薄膜及其性質探討. 清華大學材料科學工程學系學位論文, 2006: p. 1-133.
[66]Boxman, R., V. Zhitomirsky, I. Grimberg, L. Rapoport, S. Goldsmith, and B. Weiss, Structure and hardness of vacuum arc deposited multi-component nitride coatings of Ti, Zr and Nb. Surface and Coatings Technology, 2000. 125(1-3): p. 257-262.
[67]黃炳剛, AlCrNbSiTiV 高熵合金及其氮化物濺鍍薄膜之研究. 清華大學材料科學工程學系學位論文, 2009: p. 1-161.
[68]Lou, B.-S., Y.-C. Yang, Y.-X. Qiu, W. Diyatmika, and J.-W. Lee, Hybrid high power impulse and radio frequency magnetron sputtering system for TiCrSiN thin film depositions: Plasma characteristics and film properties. Surface and Coatings Technology, 2018.
[69]Depla, D. and R. De Gryse, Target poisoning during reactive magnetron sputtering: Part I: the influence of ion implantation. Surface and Coatings Technology, 2004. 183(2-3): p. 184-189.
電子全文 電子全文(網際網路公開日期:20230711)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔