跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/03 02:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張至偉
研究生(外文):Chang, Chih-Wei
論文名稱:基於分解機器之社群影響力分析研究-以GitHub為例
論文名稱(外文):Social influence analysis based on factorization machines : using GitHub as an example
指導教授:蔡銘峰蔡銘峰引用關係王釧茹
指導教授(外文):Tsai, Ming-FengWang, Chuan-Ju
學位類別:碩士
校院名稱:國立政治大學
系所名稱:資訊科學學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:23
中文關鍵詞:協同過濾分解機器社群影響力分析
外文關鍵詞:Collaborative filteringFactorization machinesSocial Influence analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
社群協同合作平台的出現創造了一種嶄新的合作形式,可以讓人們或是團體在協同合作的平台上,以實現共同目標為目的,進行用戶之間的互動和開發。以 GitHub 軟體協同合作平台為例,在專案開發的合作過程中,此平台記錄了所有參與使用者的互動過程,這些互動過程紀錄著使用者對於專案貢獻的程度之外,也隱含著使用者彼此之間的影響能力。本文藉討論與衡量影響力來排名過程中的貢獻者,以促進用戶之間更緊密的合作關係。

傳統的基於圖形的方法在處理此類問題時,會因為圖形表示法的侷限,難以把用戶和協同合作專案的額外訊息或後設資料( Metadata )整合到建立模型的過程中,無法完整闡述用戶在合作的專案之間的互動過程。因此,本研究提出一種利用推薦模型,來整合用戶與合作專案的互動過程,並在學習的過程中加入用戶與專案程式碼中的 API 資訊,來模擬整個協同合作過程中的影響力擴散傳遞的情形。透過此模型,本論文提出的方法將可以測量每個用戶對協同合作專案的潛在影響力值,進而衡量出每一用戶對於整個社群影響力,以從 GitHub 蒐集的真實數據集上進行實驗,證明本研究所提出方法之有效性,在基於一些網路上提供的排名基準,本論文提出的方法可以提供更好的影響力排名結果。除此之外,以視覺化的方式呈現實驗的結果,從中觀察出程式碼的 API 資訊對於量化 GitHub 的社群影響力的重要性。
The emergence of community collaboration platform creates a new form of cooperation that allows people or groups to interact and develop a project with users for the purpose of achieving common goals. Taking GitHub, a collaboration platform, as an example, this platform records the detailed interaction of all participating users in the process of project development. This paper aims to discuss and measure the influence of the contributors using their interactions and the additional information of projects on the platform. In specific, this study proposes a framework to integrate the interaction between users and collaborative projects and, in the process, to learn to merge the user and the project code in the API information so as to simulate the entire process of cooperation under the impact of the proliferation of transmission of user influence. The proposed method is able to measure the potential impact of each user on collaborative projects and thus the impact of each user on the entire community of GitHub collected from the real dataset in the experiments. The experimental results show that the proposed method provides better ranking results than several baseline methods. In addition, this thesis provides a visualization of the experimental results.
致謝 ... 1
中文摘要 ... 2
Abstract ... 3
第一章 緒論 ... 1
1.1 前言 ... 1
1.2 研究目的 ... 1
第二章 相關文獻探討 ... 3
2.1 社群網路的分析 ... 3
2.2 推薦模型演算法 ... 4
2.2.1 協同過濾( Collabrative Filtering ) ... 4
2.2.2 基於內容的過濾( Content-based Filtering ) ... 5
2.2.3 混合型演算法( Hybrid Algorithm ) ... 5
第三章 研究方法 ... 6
3.1 推薦系統與社會協同合作網路的類比 ... 6
3.2 潛在影響力矩陣的轉換過程 ... 7
3.3 個人社群影響力的量化函式 ... 9
第四章 實驗結果與討論 ... 12
4.1 資料集 ... 12
4.1.1 程式碼輔助訊息 ... 12
4.2 實驗設定 ... 14
4.3 評估指標 ... 14
4.4 實驗結果 ... 15
4.5 視覺化 ... 17
4.5.1 排名品質下近的現象分析 ... 20
第五章結論 ... 21
5.1 結論 ... 21
[1] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proceedings of the 7th International World Wide Web Conference, pages 107–117, 1998.
[2] M. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of information propagation in the flickr social network. In Proceedings of the 18th International Conference on World Wide Web, pages 721–730. ACM, 2009.
[3] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. In Proceedings of the 13th International Conference on World Wide Web, pages 491–501. ACM, 2004.
[4] L. Hong, O. Dan, and B. D. Davison. Predicting popular messages in twitter. In Proceedings of the 20th International Conference Companion on World Wide Web, pages 57–58. ACM, 2011.
[5] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.
[6] N. Li and D. Gillet. Identifying influential scholars in academic social media platforms. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pages 608–614. ACM, 2013.
[7] A. Lima, L. Rossi, and M. Musolesi. Coding together at scale: Github as a collaborative social network. arXiv preprint arXiv:1407.2535, 2014.
[8] L. Liu, J. Tang, J. Han, and S. Yang. Learning influence from heterogeneous social networks. Data Mining and Knowledge Discovery, 25(3):511–544, 2012.
[9] X. Liu, J. Bollen, M. L. Nelson, and H. Van de Sompel. Co-authorship networks in the digital library research community. Information Processing & Management, 41(6):1462–1480, 2005.
[10] P. Mutschke. Mining networks and central entities in digital libraries. a graph theoretic approach applied to co-author networks. In International Symposium on Intelligent Data Analysis, pages 155–166. Springer, 2003.
[11] J. L. Myers, A. Well, and R. F. Lorch. Research design and statistical analysis. Routledge, 2010.
[12] S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 33–41. ACM, 2012.
[13] S. Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Systems and Technology (TIST), 3(3):57, 2012.
[14] X. Shuai, Y. Ding, J. Busemeyer, S. Chen, Y. Sun, and J. Tang. Modeling indirect influence on twitter. International Journal on Semantic Web and Information Systems (IJSWIS), 8(4):20–36, 2012.
[15] L. Terveen and W. Hill. Beyond recommender systems: Helping people help each other. HCI in the New Millennium, 1(2001):487–509, 2001.
[16] M.-F. Tsai, C.-J. Wang, and Z.-L. Lin. Social Influencer Analysis with Factorization Machines. In Proceedings of the ACM Web Science Conference, WebSci ’15, pages 50:1–50:2, New York, NY, USA, 2015. ACM.
[17] S. White and P. Smyth. Algorithms for estimating relative importance in networks. In Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 266–275. ACM, 2003.
[18] E. Yan and Y. Ding. Discovering author impact: A pagerank perspective. Information Processing & Management, 47(1):125–134, 2011.
[19] L.-c. Yin, H. Kretschmer, R. A. Hanneman, and Z.-y. Liu. Connection and stratification in research collaboration: An analysis of the collnet network. Information Processing & Management, 42(6):1599–1613, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top