跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/16 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳均銘
研究生(外文):Chun-Ming Chen
論文名稱:殼核型觸媒應用於催化甲烷裂解產可控管徑之奈米碳管
論文名稱(外文):Production of carbon nanotubes with controllable diameter by catalytic cracking of methane using Fe@Al2O3 core-shell catalyst
指導教授:魏銘彥
口試委員:張坤森吳耿東莊桂鶴
口試日期:2018-06-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:102
中文關鍵詞:奈米碳管殼核型觸媒甲烷裂解
外文關鍵詞:carbon nanotubecore-shell catalystmethane cracking
相關次數:
  • 被引用被引用:2
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為利用殼核型觸媒轉化碳氫化合物-甲烷,以生成高經濟價值之可控管徑奈米碳管。在本研究中成功以一種新型且簡單的製備方法合成Fe@Al2O3殼核型奈米顆粒。Fe@Al2O3奈米結構透過將Fe@C奈米顆粒與Al前驅物浸漬在去離子水中形成。利用殼核型觸媒具有可控的孔徑尺寸之特性,限制奈米碳管的生長大小,進而控制奈米碳管的管徑。使用包括掃描式電子顯微鏡、穿透式電子顯微鏡及X光繞射儀等不同儀器分析使用前後觸媒之結構和形態特徵。此外,亦透過拉曼光譜和熱重分析評估所生成奈米碳材的品質和熱穩定性。

從觸媒開發的實驗結果得知,殼核型觸媒於不同的鍛燒溫度與Al/Fe莫耳比會影響其結構特性。在Al/Fe=1.5莫耳比情況下,具有相對較多的γ-Fe2O3,有利於催化甲烷裂解生成奈米碳管。而在鍛燒溫度750 ℃情況下,有最適當的殼核鍵結能力,防止殼核結構被破壞。在CTAB/Al=1條件下殼核型觸媒催化甲烷裂解之碳產量達135.9 mgC/gcat./h,甲烷轉化率高達95%。

進一步改變界面活性劑(CTAB)的濃度,以控制殼的孔徑大小。從特性分析結果得知隨著CTAB濃度的增加生成的奈米碳管的管徑有逐漸變粗的情形,藉由TEM計算其管徑,在CTAB/Al=0,平均管徑為19.24 nm;CTAB/Al=0.5,平均管徑為28.59 nm;CTAB/Al=1,平均管徑為58.06 nm。

除此之外,探討該殼核型觸媒於不同溫度以及不同反應氣體濃度環境下,催化甲烷裂解的性能,發現Fe@Al2O3殼核型觸媒無論在反應溫度(700 ℃、750 ℃,800 ℃)或反應氣體濃度(3%、5%,10%)情況下,皆有高達90%以上的甲烷轉化率。與負載型觸媒相比,殼核型觸媒具有較高熱穩定性,在800 ℃的高溫環境下,反應時間長達近3小時仍保有96% 的甲烷轉化率。這項研究為化學氣相沉積法的新型觸媒設計和合成提供了一個願景。
In this study, we used a novel core-shell catalyst to catalyze methane cracking reaction for the production of carbon nanotubes. We found that the carbon nanotubes with a controllable diameter can be produced by tuning the pore size of the shell. A novel and simple synthetic approach toward core–shell Fe@Al2O3 nanoparticles was developed in this study. Fe@Al2O3 nanostructures were formed by the immersion of Fe@C nanoparticles with Al precursor in deionized water. The as-synthesized core-shell catalyst was applied to convert the methane into carbon nanotubes. The structure property and morphological nature of the fresh and used catalysts were confirmed by different characterization analysis such as SEM, TEM, BET. Moreover, the purity and species of the nanocarbon materials were also identified by Raman spectroscopy and thermogravimetric analysis.

According to the experimental results, it was known that the core-shell catalyst affects the structural characteristics at different calcination temperatures and Al/Fe molar ratios. In the case of Al/Fe=1.5 mole ratio, there are relatively more γ-Fe2O3, which is favorable for catalytic formation of methane into carbon nanotubes. For the calcining temperature of 750 °C, the most appropriate core-shell bonding ability is provided to prevent the core-shell structure from being destroyed. In the case of CTAB/Al=1 mole ratio, the core- shell catalyst catalyzes the cracking of methane to produce 135.9 mgC/gcat./h of carbon, and the methane conversion is as high as 95%.

The pore size of the shell changed with the CTAB concentration, and further produced a carbon nanotube with a tunable diameter. From the analysis results, it was found that the average diameter is 19.24 nm at CTAB/Al=0; the average tube diameter is 28.59 nm at CTAB/Al=0.5; average tube diameter is 58.06 nm at CTAB/Al=1.

In addition, the catalytic performance of the core-shell catalyst in the methane cracking at different temperatures and reaction gas concentrations was investigated. It was found that the Fe@Al2O3 core-shell catalyst exhibits up to 90% of methane conversion under any reaction temperature (700 °C, 750 °C, 800 °C) and initial methane concentrations (3%, 5%, 10%). Compared with traditional supported catalysts, core-shell catalyst is more suitable for high-temperature environments. The methane conversion remains at 95% for nearly 3 hours under 800 ℃ reaction temperature. This work gives a vision towards the design and synthesis of advanced catalysts for chemical vapor deposition.
摘要 i
Abstract iii
總目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1-1 研究緣起與目的 1
1-2 研究架構 2
第二章 文獻回顧 5
2-1 碳材料 5
2-1-1 石墨烯 5
2-1-2 奈米碳管 7
2-2 碳源 15
2-3 熱處理反應器 17
2-4 觸媒 19
2-4-1 觸媒的特性 19
2-4-2 觸媒組成與製備 22
2-4-3 產碳觸媒 23
2-4-4 殼核型觸媒 29
2-5 影響產碳之操作因子 32
2-6 文獻總結 33
第三章 研究設備與方法 35
3-1 實驗藥品與氣體 35
3-2 實驗設備與分析儀器 36
3-3 觸媒製備方法 37
3-3-1 Fe@C活性相核製備 37
3-3-2 Fe@Al2O3殼核觸媒 38
3-3-3 Fe/Al2O3負載型觸媒 39
3-4 活性測試 40
3-5 分析儀器之簡介 44
3.5.1 熱場發射電子顯微鏡(Schottky Field-Emission Scanning Electron Microscope, FESEM) 44
3.5.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 44
3.5.3 比表面積分析儀(Brunauer-Emmett-Teller, BET) 45
3.5.4 X光粉末繞射儀(X-ray Powder Diffraction, XRD) 47
3.5.5 程序升溫還原(Temperature-Programmed Reduction, TPR) 47
3.5.6 紅外線吸收光譜儀(Fourier-Transform Infrared Spectrometer, FTIR) 47
3.5.7 熱重分析儀(Thermogravimetric Analyzer, TGA) 48
3.5.8 拉曼光譜分析(Raman spectroscopy, Raman) 48
第四章 結果與討論 50
4-1 Al/Fe莫耳比對Fe@Al2O3催化活性之影響 50
4-1-1 活性測試 50
4-1-2 表面官能基分析 53
4-1-3 相結構分析 55
4-2 鍛燒溫度對催化活性之影響 57
4-2-1 活性測試 57
4-2-2 反應前觸媒之微結構分析 59
4-2-3 還原能力分析 61
4-2-4 反應後觸媒之微結構分析 63
4-3 CTAB/Al莫耳比對催化活性之影響 64
4-3-1 活性測試 64
4-3-2 比表面積分析 66
4-3-3 反應前觸媒之形貌 68
4-3-4 反應前觸媒之微結構 70
4-3-5 反應後觸媒之形貌 71
4-3-6 反應後觸媒之微結構 73
4-3-7 熱重損失分析 75
4-3-8 碳品質分析 76
4-4反應溫度對催化活性之影響 77
4-4-1 活性測試 77
4-5反應氣體濃度對催化活性之影響 79
4-5-1 活性測試 79
4-6 殼核型觸媒與負載型觸媒之催化活性比較 81
4-6-1 活性測試 81
第五章 結論與建議 84
5-1 結論 84
5-2 建議 86
參考文獻 87
[1] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes, World Scientific1998.
[2] P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics, Nature Nanotechnology, 2 (2007) 605.
[3] J. Liu, G. Cao, Z. Yang, D. Wang, D. Dubois, X. Zhou, G.L. Graff, L.R. Pederson, J.G. Zhang, Oriented nanostructures for energy conversion and storage, ChemSusChem, 1 (2008) 676-697.
[4] K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes, Analytical and Bioanalytical Chemistry, 385 (2006) 452-468.
[5] E. Joselevich, H. Dai, J. Liu, K. Hata, A.H. Windle, Carbon nanotube synthesis and organization, Carbon Nanotubes, Springer2007, pp. 101-165.
[6] K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates, Materials Science in Semiconductor Processing, 41 (2016) 67-82.
[7] D. He, H. Li, W. Li, P. Haghi-Ashtiani, P. Lejay, J. Bai, Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles, Carbon, 49 (2011) 2273-2286.
[8] W. Li, S. Xie, L.X. Qian, B. Chang, B. Zou, W. Zhou, R. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science, 274 (1996) 1701-1703.
[9] Y. Shirazi, M.A. Tofighy, T. Mohammadi, A. Pak, Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: Purification and Functionalization, Applied Surface Science, 257 (2011) 7359-7367.
[10] U. Narkiewicz, M. Podsiadły, R. Jędrzejewski, I. Pełech, Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials, Applied Catalysis A: General, 384 (2010) 27-35.
[11] Á. Calafat, N. Sánchez, Production of carbon nanotubes through combination of catalyst reduction and methane decomposition over Fe–Ni/ZrO2 catalysts prepared by the citrate method, Applied Catalysis A: General, 528 (2016) 14-23.
[12] N. Bayat, M. Rezaei, F. Meshkani, Methane decomposition over Ni–Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber, International Journal of Hydrogen Energy, 41 (2016) 1574-1584.
[13] Z. Li, M. Li, Z. Bian, Y. Kathiraser, S. Kawi, Design of highly stable and selective core/yolk–shell nanocatalysts—A review, Applied Catalysis B: Environmental, 188 (2016) 324-341.
[14] J. Gong, J. Liu, Z. Jiang, X. Wen, X. Chen, E. Mijowska, Y. Wang, T. Tang, Effect of the added amount of organically-modified montmorillonite on the catalytic carbonization of polypropylene into cup-stacked carbon nanotubes, Chemical Engineering Journal, 225 (2013) 798-808.
[15] J. Gong, J. Liu, D. Wan, X. Chen, X. Wen, E. Mijowska, Z. Jiang, Y. Wang, T. Tang, Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism, Applied Catalysis A: General, 449 (2012) 112-120.
[16] J. Gong, J. Liu, Z. Jiang, J. Feng, X. Chen, L. Wang, E. Mijowska, X. Wen, T. Tang, Striking influence of chain structure of polyethylene on the formation of cup-stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO, Applied Catalysis B: Environmental, 147 (2014) 592-601.
[17] J. Gong, J. Liu, Z. Jiang, X. Chen, X. Wen, E. Mijowska, T. Tang, Converting mixed plastics into mesoporous hollow carbon spheres with controllable diameter, Applied Catalysis B: Environmental, 152–153 (2014) 289-299.
[18] 黄桂榮,陳建,石墨烯的合成與應用,碳素技術,2009,28期,35-39頁。
[19] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
[20] 楊全红,吕偉,楊永崗,王茂章,自由態二维碳原子晶体-單層石墨烯,新型碳材料,2008,23期,97-103頁。
[21] 徐秀娟,秦金貴,李振,石墨烯研究進展,化學進展,2009,21期,2559-2567頁。
[22] 胡耀娟,金娟,張卉,吳萍,蔡稱心,石墨烯的製備,功能化及在化學中的應用,物理化學學報,2010,26期,2073-2086頁。
[23] 黄毅,陳永勝,石墨烯的功能化及其相關應用,中國科學 B 輯化學,2009,39期,887-896頁。
[24] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183-191.
[25] 代波,邵曉萍,馬拥軍,裴重華,新型碳材料―石墨烯的研究進展,材料導報,2010,24期,17-21頁。
[26] C. Zhuo, Y.A. Levendis, Upcycling waste plastics into carbon nanomaterials: A review, Journal of Applied Polymer Science, 131 (2014).
[27] 林冠男,林鴻明,奈米碳管之發展與應用趨勢,真空科技,2006,19期, 26-33頁。
[28] J.C. Acomb, C. Wu, P.T. Williams, The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks, Applied Catalysis B: Environmental, 180 (2016) 497-510.
[29] E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: A review, Composites Science and Technology, 61 (2001) 1899-1912.
[30] T.W. Ebbesen, Carbon nanotubes: preparation and properties, CRC press1996.
[31] 黃建盛,奈米碳管簡介,科學新天地,2006,13期,1-9頁。
[32] S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Model of carbon nanotube growth through chemical vapor deposition, Chemical Physics Letters, 315 (1999) 25-30.
[33] J.W. Snoeck, G.F. Froment, M. Fowles, Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth, Journal of Catalysis, 169 (1997) 240-249.
[34] M.F. De-Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, Science, 339 (2013) 535-539.
[35] R.H. Baughman, A.A. Zakhidov, W.A. De-Heer, Carbon nanotubes--the route toward applications, Science, 297 (2002) 787-792.
[36] A. Yahyazadeh, B. Khoshandam, Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron–molybdenum alloy thin layer catalysts, Results in Physics, 7 (2017) 3826-3837.
[37] S. Panic, B. Bajac, S. Rakić, Á. Kukovecz, Z. Kónya, V. Srdić, G. Boskovic, Molybdenum anchoring effect in Fe–Mo/MgO catalyst for multiwalled carbon nanotube synthesis, Reaction Kinetics, Mechanisms and Catalysis, 122 (2017) 775-791.
[38] G. Allaedini, P. Aminayi, S.M. Tasirin, Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology, Chemical Engineering Research and Design, 112 (2016) 163-174.
[39] K. Salipira, N.J. Coville, M.S. Scurrell, Carbon produced by the catalytic decomposition of methane on nickel: Carbon yields and carbon structure as a function of catalyst properties, Journal of Natural Gas Science and Engineering, 32 (2016) 501-511.
[40] T. Tomie, S. Inoue, M. Kohno, Y. Matsumura, Prospective growth region for chemical vapor deposition synthesis of carbon nanotube on C–H–O ternary diagram, Diamond and Related Materials, 19 (2010) 1401-1404.
[41] C.P. Deck, K. Vecchio, Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams, Carbon, 44 (2006) 267-275.
[42] S.E. Mikaloff-Fletcher, P.P. Tans, L.M. Bruhwiler, J.B. Miller, M. Heimann, CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes, Global Biogeochemical Cycles, 18 (2004).
[43] Y. Kodera, Y. Ishihara, T. Kuroki, Novel process for recycling waste plastics to fuel gas using a moving-bed reactor, Energy & Fuels, 20 (2006) 155-158.
[44] J. Schirmer, J.S. Kim, E. Klemm, Catalytic degradation of polyethylene using thermal gravimetric analysis and a cycled-spheres-reactor, Journal of Analytical and Applied Pyrolysis, 60 (2001) 205-217.
[45] M.L. Mastellone, U. Arena, Bed defluidisation during the fluidised bed pyrolysis of plastic waste mixtures, Polymer Degradation and Stability, 85 (2004) 1051-1058.
[46] M. Arabiourrutia, G. Elordi, G. Lopez, E. Borsella, J. Bilbao, M. Olazar, Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor, Journal of Analytical and Applied Pyrolysis, 94 (2012) 230-237.
[47] X. Zhang, H. Lei, Synthesis of high-density jet fuel from plastics via catalytically integral processes, RSC Advances, 6 (2016) 6154-6163.
[48] B. Kunwar, B.R. Moser, S.R. Chandrasekaran, N. Rajagopalan, B.K. Sharma, Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic, Energy, 111 (2016) 884-892.
[49] 吳榮宗,工業觸媒概論,國興發行,1992。
[50] Levenspiel, Octave, Chemical reaction engineering, Industrial and Engineering Chemistry Research, 38 (1999).
[51] J. Gong, K. Yao, J. Liu, Z. Jiang, X. Chen, X. Wen, E. Mijowska, N. Tian, T. Tang, Striking influence of Fe2O3 on the “catalytic carbonization” of chlorinated poly (vinyl chloride) into carbon microspheres with high performance in the photo-degradation of Congo red, Journal of Materials Chemistry A, 1 (2013) 5247-5255.
[52] H.S. Fogler, Elements of chemical reaction engineering, Prentice-Hall International, Inc., New Jersey, (1999).
[53] 徐麗茹,Ni/SiO2 殼核觸媒應用於催化模擬廢塑膠氣化之混合氣產氫,國立中興大學環境工程研究所,碩士論文,2015。
[54] 李維瀞,評估Ni/SiO2殼核觸媒應用於催化模擬廢塑膠氣化產生之混合氣同時產氫與產碳之可行性,國立中興大學環境工程研究所,碩士論文,2016。
[55] J.C. Acomb, C. Wu, P.T. Williams, Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes, Applied Catalysis B: Environmental, 147 (2014) 571-584.
[56] A.E. Awadallah, D.S. El-Desouki, N.A.K. Aboul-Gheit, A.H. Ibrahim, A.K. Aboul-Gheit, Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to COx-free hydrogen and carbon nanomaterials, International Journal of Hydrogen Energy, 41 (2016) 16890-16902.
[57] L. Dong, Y. Du, J. Li, H. Wang, Y. Yang, S. Li, Z. Tan, The effect of CH4 decomposition temperature on the property of deposited carbon over Ni/SiO2 catalyst, International Journal of Hydrogen Energy, 40 (2015) 9670-9676.
[58] I.L.S. Mei, S. Lock, D.V.N. Vo, A. Bawadi, Thermo-catalytic methane decomposition for hydrogen production: effect of palladium promoter on Ni-based catalysts, Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2016) 191-199.
[59] L. Reddy-Enakonda, L. Zhou, Y. Saih, S. Ould‐Chikh, S. Lopatin, D. Gary, P. Del‐Gallo, J.M. Basset, Methane‐induced activation mechanism of fused ferric oxide–alumina catalysts during methane decomposition, ChemSusChem, 9 (2016) 1911-1915.
[60] M. Pudukudy, Z. Yaakob, M.S. Takriff, Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method, Energy Conversion and Management, 126 (2016) 302-315.
[61] K. Matus, A. Łamacz, B. Liszka, Characterization of CeO2, ZrO2, and CeZrO2 Crystals on CNT, Acta Physica Polonica, A., 130 (2016).
[62] 莊桂鶴,微波多元醇法製備負載型銅觸媒應用於潔淨發電技術之研究,國立中興大學環境工程研究所,博士論文,2011。
[63] X. Liu, Y. Zhang, M.A. Nahil, P.T. Williams, C. Wu, Development of Ni- and Fe- based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics, Journal of Analytical and Applied Pyrolysis, 125 (2017) 32-39.
[64] V. Jourdain, C. Bichara, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon, 58 (2013) 2-39.
[65] J.C. Acomb, C. Wu, P.T. Williams, Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics, Journal of Analytical and Applied Pyrolysis, 113 (2015) 231-238.
[66] H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, N. Tomonaga, T. Setoguchi, Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts, Carbon, 44 (2006) 2912-2918.
[67] S.M. Tan, S.P. Chai, W.W. Liu, A.R. Mohamed, Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane, Journal of Alloys and Compounds, 477 (2009) 785-788.
[68] M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments, Journal of Catalysis, 201 (2001) 183-197.
[69] Q. Zhu, X. Zhao, Y. Deng, Advances in the partial oxidation of methane to synthesis gas, Journal of Natural Gas Chemistry, 13 (2004) 191-203.
[70] S.M. Kim, P.M. Abdala, T. Margossian, D. Hosseini, L. Foppa, A. Armutlulu, W. Van-Beek, A. Comas-Vives, C. Copéret, C. Müller, Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts, Journal of the American Chemical Society, 139 (2017) 1937-1949.
[71] J. Gong, J. Liu, L. Ma, X. Wen, X. Chen, D. Wan, H. Yu, Z. Jiang, E. Borowiak-Palen, T. Tang, Effect of Cl/Ni molar ratio on the catalytic conversion of polypropylene into Cu–Ni/C composites and their application in catalyzing “Click” reaction, Applied Catalysis B: Environmental, 117–118 (2012) 185-193.
[72] H. Yu, Z. Jiang, J.W. Gilman, T. Kashiwagi, J. Liu, R. Song, T. Tang, Promoting carbonization of polypropylene during combustion through synergistic catalysis of a trace of halogenated compounds and Ni2O3 for improving flame retardancy, Polymer, 50 (2009) 6252-6258.
[73] M. Marczewski, M. Kominiak, M. Dul, H. Marczewska, The role of butylbenzene carbenium ions in the acid catalyzed cracking of polystyrene. Transformation of n-butylbenzene, sec-butylbenzene, iso-butylbenzene, tert-butylbenzene, 4-phenyl-1-butene, n-propylbenzene and n-hexylbenzene over silicaalumina and alumina acid catalysts, Reaction Kinetics, Mechanisms and Catalysis, 119 (2016) 107-120.
[74] J.B. Wang, L.E. Kuo, T.J. Huang, Study of carbon dioxide reforming of methane over bimetallic Ni-Cr/yttria-doped ceria catalysts, Applied Catalysis A: General, 249 (2003) 93-105.
[75] H.W. Kim, K.M. Kang, H.Y. Kwak, J.H. Kim, Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane, Chemical Engineering Journal, 168 (2011) 775-783.
[76] Y. Ohta, Y. Okamoto, A.J. Page, S. Irle, K. Morokuma, Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle, ACS nano, 3 (2009) 3413-3420.
[77] 杜怡君,張毓娟,翁乙壬,蘇怡帆,陳世毓,梁哲銘,葉巧雯,吳信璋,卓育泯,磁性基本特性及磁性材料應用,國立台灣大學化學系。
[78] M. Zhang, J. Sha, X. Miao, E. Liu, C. Shi, J. Li, C. He, Q. Li, N. Zhao, Three-dimensional graphene anchored Fe2O3@C core-shell nanoparticles as supercapacitor electrodes, Journal of Alloys and Compounds, 696 (2017) 956-963.
[79] C. Cao, Z. Ma, C. Ma, W. Pan, Q. Liu, J. Wang, Synthesis and characterization of Fe/C core–shell nanoparticles, Materials Letters, 88 (2012) 61-64.
[80] M. Zhang, Q. Sheng, F. Nie, J. Zheng, Synthesis of Cu nanoparticles-loaded Fe3O4@carbon core–shell nanocomposite and its application for electrochemical sensing of hydrogen peroxide, Journal of Electroanalytical Chemistry, 730 (2014) 10-15.
[81] L. Su, Y. Zhong, Z. Zhou, Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres, Journal of Materials Chemistry A, 1 (2013) 15158-15166.
[82] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander-Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical Reviews, 108 (2008) 2064-2110.
[83] A. Daneyko, D. Hlushkou, V. Baranau, S. Khirevich, A. Seidel-Morgenstern, U. Tallarek, Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core–shell particles with varied shell thickness and shell diffusion coefficient, Journal of Chromatography A, 1407 (2015) 139-156.
[84] S.P. Chai, S.H.S. Zein, A.R. Mohamed, Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane, Chemical Physics Letters, 426 (2006) 345-350.
[85] S. Cabrera, J.E. Haskouri, J. Alamo, A. Beltrán, D. Beltran, S. Mendioroz, M.D. Marcos, P. Amorós, Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes, Advanced Materials, 11 (1999) 379-381.
[86] A.J. Majewski, J. Wood, Tri-reforming of methane over Ni@ SiO2 catalyst, International Journal of Hydrogen Energy, 39 (2014) 12578-12585.
[87] A.C. Pradhan, A. Paul, G.R. Rao, Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@Al2O3− MCM-41 for methylene blue remediation, Journal of Chemical Sciences, 129 (2017) 381-395.
[88] K.Y. Tran, B. Heinrichs, J.F. Colomer, J.P. Pirard, S. Lambert, Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe–Co/Al2O3 sol–gel catalysts, Applied Catalysis A: General, 318 (2007) 63-69.
[89] S. Park, C.H. Kim, W.J. Lee, S. Sung, M.H. Yoon, Sol-gel metal oxide dielectrics for all-solution-processed electronics, Materials Science and Engineering: R: Reports, 114 (2017) 1-22.
[90] R. Ghosh-Chaudhuri, S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chemical Reviews, 112 (2012) 2373-2433.
[91] B.G. Trewyn, I.I. Slowing, S. Giri, H.T. Chen, V.S.Y. Lin, Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release, Accounts of Chemical Research, 40 (2007) 846-853.
[92] M. Niederberger, Nonaqueous sol–gel routes to metal oxide nanoparticles, Accounts of Chemical Research, 40 (2007) 793-800.
[93] G. Jacobs, T.K. Das, Y. Zhang, J. Li, G. Racoillet, B.H. Davis, Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Applied Catalysis A: General, 233 (2002) 263-281.
[94] 楊任軒,利用流體化觸媒床轉化塑膠廢棄物為奈米碳管及氫氫,國立中興大學環境工程研究所,博士論文,2016。
[95] W.A.W.A. Bakar, R. Ali, N.S. Mohammad, The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts, Arabian Journal of Chemistry, 8 (2015) 632-643.
[96] M. Trombetta, S.A. Rossini, V. Piccoli, U. Cornaro, FT-IR studies on light olefin skeletal isomerization catalysis: I. The interaction of C4 olefins and alcohols with pure γ-alumina, Journal of Catalysis, 168 (1997) 334-348.
[97] U. Ashik, W.W. Daud, H.F. Abbas, Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane–A review, Renewable and Sustainable Energy Reviews, 44 (2015) 221-256.
[98] J.C.G. Jeynes, Single walled carbon nanotubes functionalised with RNA or DNA, University of Surrey (United Kingdom), 2007.
[99] K. Kaczmarski, G. Guiochon, Modeling of the mass-transfer kinetics in chromatographic columns packed with shell and pellicular particles, Analytical Chemistry, 79 (2007) 4648-4656.
[100] V. Rosato, Comparative behavior of carbon in b.c.c. and f.c.c. iron, Acta Metallurgica, 37 (1989) 2759-2763.
[101] N.I. Medvedeva, M.S. Park, D.C. Van-Aken, J.E. Medvedeva, First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe, Journal of Alloys and Compounds, 582 (2014) 475-482.
[102] P.W. Voorhees, The theory of Ostwald ripening, Journal of Statistical Physics, 38 (1985) 231-252.
[103] X. Gao, J. Shen, Y. Hsia, Y. Chen, Reduction of supported iron oxide studied by temperature-programmed reduction combined with mössbauer spectroscopy and X-ray diffraction, Journal of the Chemical Society, Faraday Transactions, 89 (1993) 1079-1084.
[104] A. Griboval-Constant, A. Butel, V.V. Ordomsky, P.A. Chernavskii, A. Khodakov, Cobalt and iron species in alumina supported bimetallic catalysts for Fischer–Tropsch reaction, Applied Catalysis A: General, 481 (2014) 116-126.
[105] J.Y. Park, Y.J. Lee, P.K. Khanna, K.W. Jun, J.W. Bae, Y.H. Kim, Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: Effect of particle size of iron oxide, Journal of Molecular Catalysis A: Chemical, 323 (2010) 84-90.
[106] A.H. Fakeeha, A.A. Ibrahim, W.U. Khan, K. Seshan, R.L. Al-Otaibi, A.S. Al-Fatesh, Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst, Arabian Journal of Chemistry, 11 (2018) 405-414.
[107] Z. Alipour, M. Rezaei, F. Meshkani, Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming of methane, Fuel, 129 (2014) 197-203.
[108] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catalysis Today, 41 (1998) 207-219.
[109] V.K. Tiwari, Z. Chen, F. Gao, Z. Gu, X. Sun, Z. Ye, Synthesis of ultra-small carbon nanospheres (< 50 nm) with uniform tunable sizes by a convenient catalytic emulsion polymerization strategy: superior supercapacitive and sorption performance, Journal of Materials Chemistry A, 5 (2017) 12131-12143.
[110] F. Rahbar-Shamskar, F. Meshkani, M. Rezaei, Ultrasound assisted co-precipitation synthesis and catalytic performance of mesoporous nanocrystalline NiO-Al2O3 powders, Ultrasonics Sonochemistry, 34 (2017) 436-447.
[111] D.B. Williams, C.B. Carter, The transmission electron microscope, Transmission electron microscopy, Springer1996, pp. 3-17.
[112] J. Gong, J. Liu, X. Chen, Z. Jiang, X. Wen, E. Mijowska, T. Tang, One-pot synthesis of core/shell Co@C spheres by catalytic carbonization of mixed plastics and their application in the photo-degradation of Congo red, Journal of Materials Chemistry A, 2 (2014) 7461-7470.
[113] M. Pudukudy, Z. Yaakob, Z.S. Akmal, Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts, Applied Surface Science, 330 (2015) 418-430.
[114] R.A. Di-Leo, B.J. Landi, R.P. Raffaelle, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, Journal of Applied Physics, 101 (2007) 064307.
[115] M. Pudukudy, Z. Yaakob, Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes, Chemical Engineering Journal, 262 (2015) 1009-1021.
[116] D. Ayillath-Kutteri, I.W. Wang, A. Samanta, L. Li, J. Hu, Methane decomposition to tip and base grown carbon nanotubes and COx-free H2 over mono- and bimetallic 3d transition metal catalysts, Catalysis Science & Technology, 8 (2018) 858-869.
[117] A.S. Al-Fatesh, A.H. Fakeeha, A.A. Ibrahim, W.U. Khan, H. Atia, R. Eckelt, K. Seshan, B. Chowdhury, Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature, Journal of Saudi Chemical Society, 22 (2018) 239-247.
[118] A.A. Ibrahim, A.S. Al‐Fatesh, W.U. Khan, M.A. Soliman, A. Otaibi, L. Raja, A.H. Fakeeha, Influence of support type and metal loading in methane decomposition over iron catalyst for hydrogen production, Journal of the Chinese Chemical Society, 62 (2015) 592-599.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊