跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯凱昱
研究生(外文):Kai-Yu Tang
論文名稱:綠色植物自供電環境監控系統探討及研究
論文名稱(外文):The Investigations and Studies of Self-Powered Environmental Monitoring System Using Plant Itself.
指導教授:蕭桂森
指導教授(外文):Vincent K.S.Hsiao
口試委員:程德勝朱智謙
口試日期:2018-07-24
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:光電科技碩士學位學程在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:77
中文關鍵詞:微生物燃料電池電解質土壤植物發電物聯網感測器
外文關鍵詞:Microbial fuel cellElectrolytesoilplantPower generationInternet of ThingsSensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:2
再生能源是指來源不會匱乏的能源,目前研究範圍包含了太陽能、風力、水力、潮汐能、太陽能、地熱以及生質能源,其中全球能源產量中生質能所佔的比例日益增加。生質能源是指將生物所產生的有機物經轉化程序而衍生出的能源,包括電、熱、生質柴油以及生質能產氫,其優點有污染排放性低且可將廢棄物回收再利用或是將放棄物分解,是一種兼顧環保且可永續經營的能量來源。
微生物燃料電池的早期研究多以提升產電效能為主,在技術發展逐年成熟後,連結其他領域的概念拓增微生物燃料電池的應用性,目前主要的應用方面有:
一、廢水處理:
在廢水處理過程中藉由微生物降解有機物以達到水質淨化並且同時產電的效果。
二、生物產氫:
藉由輸入外部能量以克服熱力學上的障礙,並可將發酵反應的副產物藉由微生物催化電解之方式轉化成氫氣,有效提升產氫量。
三、生物感測器:
陽極中的基質濃度與陰極中的電子受體之消耗量皆和電池產出電流成正比,因此可以用作生物需氧量的感測器,此感測器未來更是可以應用在現場監測與控制上。
本研究主要在探討如何利用綠色植物生長的土壤來發電,並做出最佳的土壤與電極來製做模組,在天候及環境等不確定的因素,希望能設計一個利用綠色植物發電可獨立供給能源方式為目的,供給感測電子元件驅動,利用分散式架構做感測系統,運用無線傳輸做遠端監控。
首先,測量不同地方的土壤,發現土壤的發電量會因為地區、植物數量或水分的多寡,進而影響土壤的發電量。串聯不同杯數的土壤會因為串接量增多了,所以將提高它的發電量。電極的面積越大,所接觸到的土壤面積較大,可以一次傳輸較多的電,發電量也較大。
雖然想利用環保廢棄物想要做出更環保好用的電極,但是實際測量的結果,發現還是由鋅、銅電極可以產生較大的發電量效應,由於各種電極的活性不同,所以能傳輸的電不同。300克的濕土加 100克的乾土發電量最高,可知土壤的濕度會影響發電量。土壤的導電度和酸鹼值與發電量並沒有直接的關係。產氣量和發電量有直接的關係,產氣量越多,發電量也越高。串聯16組電池模組,可讓LED燈持續發光66小時,澆水後亦能持續發光;最後我們運用分散式架構微型開發版Nano Arduino,配合微型感測器,用電量於90mA,對分散式架構的感測器是足夠的,使用凌陽創新科技,所開MUART0-PP-N-N模組,具有低電量高傳輸,非常適合農業務聯網使用,利用綠色植物發電所提供環境監控系統,並隨著作業將植物生長數據電子化,並進行自動記錄,顯示利用平時視為微電的綠色植物發電,也可作為新一代能源的創新運用。

Renewable energy refers to energy sources that are not scarce. The current research scope includes solar energy, wind power, hydropower, tidal energy, solar energy, geo-thermal energy and biomass energy. Among them, the proportion of biomass energy in global energy production is increasing. Biomass energy refers to the energy derived from the conversion of organic matter produced by organisms, including electricity, heat, biodiesel and biomass. Hydrogen has the advantages of low pollution emission and re-cycling of waste. Or the decomposition of the abandonment is a source of energy that is both environmentally friendly and sustainable.
The early research on microbial fuel cells is mainly to improve the power generation ef-ficiency. After the technology development matures year by year, the concept of con-necting other fields expands the applicability of microbial fuel cells. At present, the main application areas are:
1.Wastewater treatment:
Degradation of organic matter by microorganisms in the wastewater treatment process to achieve water purification and simultaneous electricity production.
2.Biological hydrogen production:
By inputting external energy to overcome thermodynamic obstacles, and by-products of the fermentation reaction can be converted into hydrogen by means of microbial cata-lytic electrolysis, thereby effectively increasing the amount of hydrogen produced.
3.The biosensor:
The concentration of the matrix in the anode and the consumption of electron acceptors in the cathode are proportional to the current produced by the battery, so it can be used as a sensor for biological oxygen demand. This sensor can be applied to field monitoring in the future. Controlled.
This study is mainly to explore how to use the soil grown by green plants to generate electricity, and to make the best soil and electrodes to make modules. In the uncertain factors such as weather and environment, I hope to design a green plant to generate electricity. For the purpose of supplying energy, the sensing electronic component is driven, the distributed architecture is used as the sensing system, and the wireless transmission is used for remote monitoring.
First, we measure the soil in different places and find that the amount of electricity gen-erated by the soil will affect the amount of electricity generated by the soil, depending on the area, the number of plants, or the amount of water. The combination of different cups of soil will increase its power generation due to the increased amount of tandem. The larger the area of the electrode, the larger the area of the soil that is contacted, the more electricity that can be transferred at one time, and the larger the amount of elec-tricity generated.
Although I want to use environmentally friendly waste to make a more environmentally friendly electrode, the actual measurement results show that the zinc and copper elec-trodes can produce a large power generation effect. Because of the different activities of various electrodes, they can be transmitted. The electricity is different. 300 grams of wet soil plus 100 grams of dry soil has the highest power generation, and it is known that the humidity of the soil affects the amount of electricity generated. The conductivity and pH of the soil are not directly related to the amount of electricity generated. There is a direct relationship between gas production and power generation. The more gas production, the higher the power generation. The 16-cell battery module is connected in series to allow the LED lamp to continuously emit light for 66 hours. It can also continue to emit light after watering. Finally, we use the distributed architecture micro-development version of Nano Arduino, with a miniature sensor, the power consumption is 90mA, and the dispersion is The sensor of the architecture is sufficient. Using the innovative technology of Lingyang, the MUART0-PP-NN module is equipped with low power and high transmission, which is very suitable for the networking of agricultural business, and provides environmental monitoring system by using green plant power generation. Electronically planting plant growth data with the industry and recording it automatically shows that it can be used as a new generation of energy by using green plants that are usually regarded as micro-electricity.
摘要 i
Abstract iii
目 次 vi
表目次 ix
圖目次 x
第一章 緒論 1
1.1 研究背景 3
1.2 研究動機及目的 3
1.3 研究範圍 4
1.4 研究流程 5
第二章 文獻回顧 6
2.1 土壤的氧化還原 6
2.2 微生物燃料電池 (Microbial fuel cells, MFCs) 13
2.3 環境感測物聯網 21
2.4 目前植物發電的應用實例 32
第三章 實驗材料與方法 35
3.1 實驗材料 35
3.1.1土壤鹽類 35
3.1.2土壤電解質 36
3.1.3電極板材料 36
3.1.4植物的選擇 37
3.2數據紀錄與分析原理 37
3.2.1電壓紀錄 37
3.2.2功率密度(Power density) 37
3.2.3開路電位 38
3.2.4庫倫效率 38
3.3實驗設備與器材 39
3.4實驗方法與結果 40
3.4.1不同地區的土壤發電量是否不同 40
3.4.2測量串聯不同杯數土壤的電壓強弱 41
3.4.3測量不同正負極材質組合所產生的電壓 44
3.4.4不同面積的鋅、銅電極是否會影響電壓強弱 45
3.4.5有無種植植物是否會影響發電量 47
3.4.6同條件下植物有無澆水是否影響發電量大小 48
3.4.7土壤溼度與發電量的關係 49
3.4.8電極擺放方式是否影響土壤發電量 51
3.4.9導電度與土壤發電量的關係 53
3.4.10土壤 pH 值與發電量的關係 54
3.4.11土壤產氣量與發電量的關係 56
3.4.12利用植物發電提供物聯網系統所需電源實驗 58
第四章 研究討論 65
4.1 綠色植物發電土壤差異與產電量效能分析討論 65
4.2 綠色植物發電電極差異與產電量效能分析討論 70
4.3 綠色植物發電植物種植差異與產電量效能分析討論 70
4.4 物聯網系統所需電源討論 71
第五章 結論 72
參考文獻 73

[1]吳敏資(2014)以導電碳墨發展微生物燃料電池與電解電池之整合系統.
[2]Marjolein Helder (2012), D.P Strik, H.V.M. Hamelers, C.J.N. Buisman, The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances, Biotech-nology for Biofuels, 5, 2012, 70.
[3]Grove, W.R. (1852) On the Electro-Chemical Polarity of Gases. Philosophical Transac-tions of the Royal Society of London 142: 87-101.
[4]Potter, M.C. (1911) Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society
[5]Regan, J.M., and Logan, B.E. (2006) Electricity-Producing Bacterial Communities in Mi-crobial Fuel Cells. Trends in Microbiology 40:512-518.
[6]Shukla, A.K., Suresh, P., Berchmans, S., and Rajendran, A. (2004)Biological Fuel Cells and Their Applications. current science 87: 455-469.
[7]Rozendal, R.A., Hamelers, H.V., Rabaey, K., Keller, J., and Buisman, C.J. (2008) To-wards Practical Implementation of Bioelectrochemical Wastewater Treatment. Trends Biotechnol 26:450-459.
[8]Sell, D., Krämer, P., and Kreysa, G. (1989) Use of an Oxygen Gas Diffusion Cathode and a Three-Dimensional Packed Bed Anode in a Bioelectrochemical Fuel Cell. Applied Microbiology and Biotechnology31: 211-213.
[9]Park, D.H., Kim, S.K., Shin, I.H., and Jeong, Y.J. (2000)Electricity Production in Biofuel Cell Using Modified Graphite Electrode with Neutral Red. Biotechnology Letters: 1301–1304.
[10]Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen,M.T., and Lovley, D.R. (2005) Extracellular Electron Transfer Via Microbial Nanowires. Nature 435: 1098-1101.
[11]Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard,T.L., and Lovley, D.R. (2006) Biofilm and Nanowire Production Leads to Increased Current in Geobacter Sulfurreducens Fuel Cells. Applied and Environmental Microbiology 72: 7345-7348.
[12]Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D.,Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S.,Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi,L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S.i.,Logan, B., Nealson, K.H., and Fredrickson, J.K. (2006) ElectricallyConductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain Mr-1 and Other Microorganisms. Proceedings of the NationalAcademy of Sciences 103: 11358-11363.
[13]Davis, F., and Higson, S.P.J. (2007) Biofuel Cells—Recent Advances and Applications. Biosensors and Bioelectronics 22: 1224–1235.
[14]Ieropoulos, I.A., Greenman, J., Melhuish, C., and Hart, J. (2005) Comparative Study of Three Types of Microbial Fuel Cell. Enzyme and Microbial Technology 37: 238-245.
[15]Chaudhuri, S.K., and Lovley, D.R. (2003) Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells. Nat Biotechnol 21: 1229-1231.
[16]Lu, N., Zhou, S.G., Zhuang, L., Zhang, J.T., and Ni, J.R. (2009)Electricity Generation from Starch Processing Wastewater Using Microbial Fuel Cell Technology. Biochemical Engineering Journal 43:246-251.
[17]Liu, H., Ramnarayanan, R., and Logan, B.E. (2004) Production of Electricity During Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ Sci Technol 38: 2281-2285.
[18]Min, B., and Logan, B.E. (2004) Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environ Sci Technol. 38: 5809-5814.
[19]Ahna, Y., and Logan, B.E. (2010) Effectiveness of Domestic Wastewater Treatment Using Microbial Fuel Cells at Ambient and Mesophilic Temperatures. Bioresource Technology 101: 469-475.
[20]Niessen, J., Schröder, U., Harnisch, F., and Scholz, F. (2005)Gaining Electricity from in Situ Oxidation of Hydrogen Produced by Fermentative Cellulose Degradation. Letters in Applied Microbiology 41:286-290.
[21]Ren, Z., Ward, T.E., and Regan, J.M. (2007) Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture. Environ Sci Technol. 41: 4781-4786.
[22]Rabaey, K., and Verstraete, W. (2005) Microbial Fuel Cells: Novel Biotechnology for Energy Generation. Trends Biotechnol 23: 291-298.
[23]Bond,D.R.,Holmes, D.E., Tender, L.M., and Lovley, D.R.(2002)Electrode-Reducing Microorganisms That Harvest Energy from MarineSediments. Science 295: 483-485.
[24]Lovley, D.R. (2006) Bug Juice: Harvesting Electricity with Microorganisms. Nat Rev Microbiol 4: 497-508.
[25]Logan, B.E. (2005) Simultaneous Wastewater Treatment and Biological Electricity Gen-eration. Water Science & Technology 52: 31-37.
[26]Sell, D., Krämer, P., and Kreysa, G. (1989) Use of an Oxygen Gas Diffusion Cathode and a Three-Dimensional Packed Bed Anode in a Bioelectrochemical Fuel Cell. Applied Microbiology and Biotechnology 31: 211-213.
[27]Du, Z., Li, H., and Gu, T. (2007) A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnology Ad-vances 25: 464-482.
[28]Hong, S.W., Chang, I.S., Choi, Y.S., and Chung, T.H. (2009) Experimental Evaluation of Influential Factors for Electricity Harvesting from Sediment Using Microbial Fuel Cell. Bioresource Technology 100:3029-3035.
[29]Cheng,S.,Liu, H., and Logan, B.E. (2006) Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochemistry Commu-nications 8: 489-494.
[30]Rabaey, K., and Verstraete, W. (2005) Microbial Fuel Cells: Novel Biotechnology for Energy Generation. Trends Biotechnol 23: 291-298.
[31]Du, Z., Li, H., and Gu, T. (2007) A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnology Ad-vances 25: 464-482.
[32]Reimers, C.E., L.M. Tender, S. Fertig and W. Wang. (2001). Harvesting energy from themarine sediment−water Interface. Environ. Sci. Technol. 35: 192-195.
[33]Bond, D.R., D.E. Holmes, L.M. Tender and D.R. Lovley.(2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 295:483-485.
[34]Pilobello, K., L.M. Tender, C.E. Reimers, H.A. Stecher, D.E. Holmes and D.R. Bond. (2002). Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20: 821-825.
[35]Hamelers, B., R. Rozendal, U. Schröder, J. Keller, S. Freguia and P. Aelterman. (2006). Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40: 5181-5192.
[36]Lovley, D.R. (2006). Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4: 497-508.
[37]Logan, B.E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev.Microbiol. 7:375-381.
[38]Zhi, W., Z. Ge, Z. He and H. Zhang. (2014). Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresour. Technol. 171: 461-468.
[39]Rismani-Yazdi, H., A.D. Christy, B.A. Dehority, M. Morrison, Z. Yu and O.H. Tuovinen. (2007). Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398-1407.
[40]Zang, G.-L., G.-P. Sheng, Z.-H. Tong, X.-W. Liu, S.-X. Teng and W.-W. Li. (2010). Direct electricity recovery from Canna indica by an air-cathode microbial fuel cellinoculated with rumen microorganisms.Environ. Sci. Technol. 44: 2715-2720.
[41]Ha, P.T., T.K. Lee, B.E. Rittmann, J. Park and I.S. Chang.( 2012). Treatment of alcohol distillery wastewater using a bacteroidetes-dominant thermophilic microbial fuel cell. Environ. Sci. Technol. 46: 3022-3030.
[42]Nandy, A., V. Kumar and P.P. Kundu. (2013). Utilization of proteinaceous materials for power generation in a mediatorless microbial fuel cell by a new electrogenic bacteria Lysinibacillus sphaericus VA5. Enzyme Microb. Technol. 53: 339-344.
[43]Choi, J. and Y. Liu. (2014). Power generation and oil sands process-affected water treatment in microbial fuel cells. Bioresour. Technol. 169: 581-587.
[44]Hassan, S.H.A., S.M.F. Gad El-Rab, M. Rahimnejad, M. Ghasemi, J.-H. Joo and Y. Sik-Ok. (2014). Electricity generation from rice straw using a microbial fuel cell. Int. J. Hydrog. Energy. 39: 9490-9496.
[45]Tender, L.M., S.A. Gray, E. Groveman, D.A. Lowy, P. Kauffman and J. Melhado. (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J. Power Sources. 179: 571-575.
[46]Lu,Y.,M.Qin,H.Yuan, I. Abu-Reesh and Z. He.( 2014). When bioelectrochemical systems meet forward osmosis: accomplishing wastewater treatment and reuse through synergy. Water. 7: 38-50.
[47]Saeed, H.M., G.A. Husseini, S. Yousef, J. Saif, S. Al-Asheh and A. Abu Fara. (2015).Microbial desalination cell technology: A review and a case study. Desalina-tion.359: 1-13.
[48]Technology Review, “10 Emerging Technologies That Will Change the World,” http://www.technologyreview.com/article/13060/, Retrieved Date 2011/7/15.
[49]Smart Dust Project, “Autonomous sensing and communication in a cubic millimeter,” 2001, http://robotics.eecs.berkeley.edu/~pister/SmartDust/, Retrieved Date 2011/6/25.
[50]ZigBee Alliance, “ZigBee Specification v1.4d,” April 2009, http://www.zigbee.org/, Retrieved Date 2011/6/25.
[51]李展宏,“基於 Zigbee 無線感測網路之智慧型照明環境設計與實作”, 國立成功大學電腦與通信研發所碩士學位論文, 2005 年 7 月.
[52]Akyildiz, F., Su, W., Sankarasubramaniam, Y., and Cyirci, E. “A Survey on Sensor Networks,” IEEE Communications Magazine, vol.40, no.8, pp.102 -114, August 2002.
[53]萬一怒,“農業無線感測器網路建構技術”,行政院農業委員會農糧署, 田間無線感測器網路技術暨應用研習班, 2006 年.
[54]莊芳玲,“以自時系統實作 IEEE 802.15.4 之媒體存取層”, 大同大學資訊工程研究所碩士論文, 2007 年1月.
[55]佐藤成美(2012)nippon.com日本可再生能源的潛力和未來:利用微生物能源的水田發電
[56]賴宛靖(2016)工業技術與資訊第299期9月號:掌握與大自然「來電」新契機 4: 28-29.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊