(52.91.185.49) 您好!臺灣時間:2018/12/11 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:林廷諭
研究生(外文):Ting-Yu Lin
論文名稱:可充電無線感測網路充電器佈置之改進粒子群最佳化
論文名稱(外文):Improved Particle Swarm Optimization for Charger Deployment in Wireless Rechargeable Sensor Networks
指導教授:江振瑞江振瑞引用關係
指導教授(外文):Jehn-Ruey Jiang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:可充電無線感測網路粒子群最佳化演算法永續性無線充電器佈置
外文關鍵詞:Wireless Rechargeable Sensor NetworkParticle Swarm OptimizationSustainabilityWireless Charger Deployment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在可充電無線感測網路(Wireless Rechargeable Sensor Networks, WRSNs)中,透過無線充電技術以無線充電器(Wireless Charger)對網路中的感測節點進行電力補充,使得所有感測節點可以持續運作,讓WRSN具有永續性(sustainability)。由於無線充電器價格昂貴,因此有許多演算法嘗試以較少的充電器覆蓋所有感測節點以達成WRSN的永續性,包括執行時間較長但是效能較佳使用粒子群最佳化(Particle Swarm Optimization, PSO)概念的PSCD(Particle Swarm Charger Deployment)演算法,及執行時間較短但是性能較差使用貪婪解題策略的NB-GCS(Node Based Greedy Cone Selection)及PB-GCS(Pair Based Greedy Cone Selection)演算法。 本論文改進PSCD演算法,提出IPSCD(Improved Particle Swarm Charger Deployment)與LPSCD(Lexicographical Particle Swarm Charger Deployment)粒子群最佳化演算法進行WRSN充電器佈置最佳化。PSCD演算法透過執行固定數目的迭代,在粒子群中找出一個一個最佳充電器佈置位置;但是此時充電器的指向性天線(directional antenna)方向對該最佳位置而言卻不是最佳的。另外,當感測器數量少時,所有粒子群的位置可能都無法針對感測器有效充電,因此找不到最佳的充電器佈置位置。IPSCD演算法改進PSCD演算法,在每次找到最佳充電器佈置位置時,再以PSO概念找出充電效益最高的指向性天線方向。LPSCD演算法也是改進PSCD演算法,當搜尋過程中有找不到任何具充電效益的充電器佈置位置時,LPSCD演算法改為以最靠近感測器之粒子位置作為最佳充電器佈置位置,如此可加速找到具有實際充電效益的最佳充電器佈置位置。我們進行模擬實驗以比較IPSCD演算法、LPSCD演算法、PSCD演算法、PB-GCS演算法與NB-GCS演算法的效能,實驗結果顯示IPSCD與LPSCD都能以較少的充電器達到所有感測器的充電需求,使得WRSN具有永續性。
In Wireless Rechargeable Sensor Networks (WRSNs), wireless chargers can recharge batteries of sensor nodes so that they can operate sustainably to provide WRSNs with the property of sustainability. Since wireless chargers are costly, many algorithms try to deploy as few as possible chargers to cover all sensor nodes and fulfill their charging demands for making WRSNs sustainable. Typical algorithms include the PSCD (Particle Swarm Charger Deployment) algorithm and two greedy algorithms, namely, the NB-GCS (Node Based Greedy Cone Selection) and PB-GCS (Pair Based Greedy Cone Selection) algorithms. The first algorithm is based on the Particle Swarm Optimization (PSO) concept and has better performance than the other two algorithms. This study tries to improve the PSCD algorithm, and proposes the IPSCD (Improved Particle Swarm Charger Deployment) algorithm and LPSCD (Lexicographical Particle Swarm Charger Deployment) algorithm for optimizing WRSN charger deployment. The PSCD algorithm deploys chargers by running a specific number of iterations to find the best charger position one by one. However, when the best charger position is found, its directional antenna direction is not optimal with respect to the position. The IPSCD algorithm improves the PSCD algorithm by re-applying the PSO concept to find the antenna direction with the optimal charging efficiency. For some cases, the PSCD algorithm cannot find any charger position to charge any sensor with effective charging efficiency. Encountering such cases, the LPSCD algorithm tries to find the position that is nearest to some sensor, instead of the positon with the maximal charging efficiency, to deploy a charger. This can accelerate the finding of positions with good and effective charging efficiency. We perform simulation experiments to compare the performance of the IPSCD, LPSCD, PSCD, PB-GCS, and NB-GCS algorithms. The simulation results show that the IPSCD and LPSCD algorithms indeed outperform the other three algorithms in sense that they use fewer chargers to fulfill the charging requirements of all sensor nodes to make WRSNs sustainable.
中文摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VII
一、緒論 1
1.1 研究背景與動機 1
1.2 研究目的與貢獻 5
1.3 論文架構 6
二、背景知識 7
2.1 無線充電技術 7
2.2 充電器佈置貪婪演算法 8
2.3 粒子群最佳化演算法 11
2.4 粒子群充電器佈置演算法 13
2.4.1 適應函數 14
2.4.2 粒子速度與位置更新 15
2.4.3 PSCD 演算法細節 17
三、假設與方法 19
3.1 環境假設與問題定義 19
3.2 IPSCD 演算法 19
3.2.1 IPSCD 粒子位置與適應函數 19
3.2.2 IPSCD 粒子速度及位置更新 20
3.2.3 IPSCD 演算法細節 22
3.3 LPSCD 演算法 24
3.3.1 LPSCD 適應函數 25
3.3.2 LPSCD 演算法細節 26
四、實驗模擬與分析 28
4.1 實驗器材設備 28
4.2 模擬參數與環境設定 30
4.3 PSCD 參數模擬與分析 31
4.4 模擬結果 33
五、結論 36
參考文獻 37
[1] Afzal, M. I., Mahmood, W., & Akbar, A. H. (2008, December). A battery recharge model for wsns using free-space optics (fso). In Multitopic Conference, 2008. INMIC 2008. IEEE International (pp. 272-277). IEEE.

[2] Chiu, T. C., Shih, Y. Y., Pang, A. C., Jeng, J. Y., & Hsiu, P. C. (2012, September). Mobility-aware charger deployment for wireless rechargeable sensor networks. In Network Operations and Management Symposium (APNOMS), 2012 14th Asia-Pacific (pp. 1-7). IEEE.

[3] Gopinath, A. (2013). All about transferring power wirelessly. Electronics for You E-zine, 52-56.

[4] He, S., Chen, J., Jiang, F., Yau, D. K., Xing, G., & Sun, Y. (2013). Energy provisioning in wireless rechargeable sensor networks. IEEE transactions on mobile computing, 12(10), 1931-1942.

[5] Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. science, 317(5834), 83-86.

[6] J. Kennedy, and R. Eberhart, “Particle swarm optimization,” in Proc. of IEEE International Conference on Neural Networks, 1995.

[7] Shu, Y., Yousefi, H., Cheng, P., Chen, J., Gu, Y. J., He, T., & Shin, K. G. (2016). Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 15(7), 1699-1713.

[8] Fu, L., Cheng, P., Gu, Y., Chen, J., & He, T. (2016). Optimal charging in wireless rechargeable sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 278-291.

[9] Liao, J. H., & Jiang, J. R. (2014, July). Wireless charger deployment optimization for wireless rechargeable sensor networks. In Ubi-Media Computing and Workshops (UMEDIA), 2014 7th International Conference on (pp. 160-164). IEEE.

[10] Li, K., Luan, H., & Shen, C. C. (2012, April). Qi-ferry: Energy-constrained wireless charging in wireless sensor networks. In Wireless Communications and Networking Conference (WCNC), 2012 IEEE (pp. 2515-2520). IEEE.

[11] Lin, T. S., & Weng, C. C. (2011). Using a Quadratic Gaussian Function to Describe the Accumulated Charging Energy of a Lithium-Ion Battery. Hwa Kang Journal of Engineering, 27, 141-147.

[12] Tan, Y. K., & Panda, S. K. (2010). Review of energy harvesting technologies for sustainable WSN. In Sustainable wireless sensor networks. Intech.

[13] Popovici, E., Magno, M., & Marinkovic, S. (2013, June). Power management techniques for wireless sensor networks: a review. In Advances in Sensors and Interfaces (IWASI), 2013 5th IEEE International Workshop on (pp. 194-198). IEEE.

[14] Parks, A. N., Sample, A. P., Zhao, Y., & Smith, J. R. (2013, January). A wireless sensing platform utilizing ambient RF energy. In Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2013 IEEE Topical Conference on (pp. 154-156). IEEE.

[15] Zungeru, A. M., Ang, L. M., Prabaharan, S., & Seng, K. P. (2012). Radio frequency energy harvesting and management for wireless sensor networks. Green mobile devices and networks: Energy optimization and scavenging techniques, 341-368.

[16] Escolar, S., Chessa, S., & Carretero, J. (2012, July). Optimization of quality of service in wireless sensor networks powered by solar cells. In Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International Symposium on (pp. 269-276). IEEE.

[17] Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE.

[18] Meissner, M., Schmuker, M., & Schneider, G. (2006). Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. BMC bioinformatics, 7(1), 125.

[19] Sibakoti, M. J., & Hambleton, J. (2011). Wireless power transmission using magnetic resonance. Cornell College PHY312.

[20] Mouser website: http://www.mouser.tw/applications/rf_energy_harvesting/

[21] Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2016). Wireless charging technologies: Fundamentals, standards, and network applications. IEEE Communications Surveys & Tutorials, 18(2), 1413-1452.

[22] PowerCast website: http://www.powercastco.com

[23] Jiang, J. R., Chen, Y. C., & Lin, T. Y. (2018). Particle swarm optimization for charger deployment in wireless rechargeable sensor networks. International Journal of Parallel, Emergent and Distributed Systems, 1-16.
電子全文 電子全文(網際網路公開日期:20190801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔