跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:金保羅
研究生(外文):Zoundou S. Jean Paul
論文名稱:水稻強化栽培系統之農藝參數及產量調查
論文名稱(外文):Investigating the growth parameters and yield attributes in different water regimes under the System of Rice Intensification (SRI)
指導教授:王裕民王裕民引用關係
指導教授(外文):Wang Yu-Min
口試委員:張煜權陳清田鍾文貴
口試委員(外文):Yu-Chuan ChangChen Ching -TyanWen-Guey Chung
口試日期:2018-07-02
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土壤與水工程國際碩士學位學程
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:120
中文關鍵詞:關鍵字水道強化灌溉系統土壤髮絲狀裂縫農藝參數生產效率最佳水深
外文關鍵詞:Key wordsSystem of Rice Intensification (SRI)soil hairlines cracksgrowth parametersyield attributesoptimum water depth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
論文摘要內容:
水稻强化栽培系统(System of rice intensification, SRI) 是一種對環境友善
之水稻生產系統,在提高產量和產量的同時,減少了用水量和成本。在
氣候變遷所引起之水資源日益短缺的情況下,該如何減少需水量已為長
期關注的研究課題。本研究採用乾濕交替灌溉法,透過觀察評估水稻在
旱季的生長參數和產量屬性以及灌溉水稻的相關水分生產力。本研究在
國立屏東科技大學灌溉試驗田進行實驗,旨在建立臺灣熱帶旱季灌溉條
件下,應用 SRI 之最適灌溉水深。實驗過程中對植物間距、幼苗密度、
種植時間、除草方法等 SRI 管理原則進行研究。測試了包括控制區在內
的五種不同的灌溉水深,並以地表出現髮絲狀裂縫作為加水依據。本研
究所進行之實驗包括被視為對照組之 3cm (SRI3),與 2cm (SRI2)、4cm
(SRI4)和 5cm (SRI5) 的乾溼交替灌溉法 (Alternate wetting and drying,
AWD),以及前人研究所指出之最佳灌溉水深每週 3cm 的灌水深度
(SRI3/w)進行比較。所觀測之項目包括生長參數有株高、葉面積指數
(LAI)、葉綠素含量,以及生產之效率包括分蘗數、生產分蘗數、分蘗效
率、穗數、穗長和重量、每千粒稻米重、總稻米產量和水分生產力等。
實驗成果顯示,SRI3 在大多數生長參數和產量屬性中均有最佳成果。調
查還發現,在生長參數評估和生產效率分析中,不同給水條件在某些發
育階段存在顯著差異。產量性狀如每平方公尺稻穗數和稻穗數百分比是
決定總產量之關鍵因素。與 SRI2 (3448kg/ha)、SRI3/w (3340kg/ha)、
SRI4 (3081kg/ha)和 SRI5 (2604kg/ha)相比,SRI3 為 4072kg/ha。而在土壤
含水量比較中,SRI3 的含水量最高(0.19kg/m 3 ),SRI2 和 SRI3/w 的含水量均爲 0.18kg/m 3 ,而 SRI4 及 SRI5 的水分生產率卻相對較低,分別爲
0.15kg/m 3 和 0.12kg/m 3 。其可能原因係在氣候條件對水稻生長週期的影
響以及對水稻施加的水分脅迫,導致產量下降和水分生產率較低。研究
結果顯示,在旱季土壤髮絲狀裂隙開始後以 3cm 水深灌溉是一種最佳的
給水條件。但仍需調整水稻種植週期,以避免臨界溫度。
關鍵字: 水道強化灌溉系統,土壤髮絲狀裂縫,農藝參數,生產效率,
最佳水深。
Abstract
The system of rice intensification (SRI) is a friendly-environment rice
production system that has been proved to reduce the water consumption and
production inputs when at the same time increase yield and water productivity.
With the increasing water scarcity due to climate change, water reduction in
production is a permanent research issue. The present investigation was
carried out to evaluate the effects of different water regimes on the growth
parameters and yield attributes of rice under SRI in dry season as well as their
related water productivity in irrigated rice, using alternate wetting and drying
water management by observation. The study aimed at finding out the
optimum irrigated water depth applied to SRI in Taiwan tropical dry season.
The experiment was conducted at irrigated rice field in National Pingtung
University of Science and Technology (NPUST). SRI management principles
such as plant spacing, seedling densities, duration of planting and weeding
method have been thoroughly conducted. Five (5) different water depths
including the control plots were tested. The control irrigated at 3cm water
depth at soil hairline cracks (SRI3) was compared to 2cm (SRI2), 4cm (SRI4)
and 5cm (SRI5) water depth under alternate wetting and drying (AWD)
irrigation based on visual observations, and also to 3cm water depth per week
(SRI3/w), previously identified as optimum water depth. Growth parameters
like plant height, leaf area index (LAI), chlorophyll content, and yield
attributes such as tillers number, productive tillers number, tillering efficiency,
panicles number, panicles length and weight, spikelets number, filled
spikelets ratio, 1,000 grains weight, total grain yields and water productivity
were assessed. The results showed that the application of 3cm at soil hairline
cracks (SRI3) recorded the highest values in most of the growth parameters as
well as in the yield attributes. The investigation revealed also that significant
differences were observed during some development stages between the different water treatments in the growth parameters assessment as well as in
the yield attributes analyses. Yield attributes like spikelets numbers per meter
square and filled spikelets percentage were determinant for the grain yield.
SRI3 yielded better with 4072kg/ha compared to SRI2 (3448kg/ha), SRI3/w
(3340kg/ha), SRI4 (3081kg/ha and SRI5 (2604kg/ha). The highest water
productivity was recorded in SRI3 at soil hairline cracks (0.19kg/m 3 ) whereas
SRI2 at soil hairline cracks and SRI3/w obtained both 0.18kg/m 3 . Even
though they received much water, SRI4 and SRI5 at soil hairline cracks
recorded the lowest water productivity with respectively 0.15kg/m 3 and
0.12kg/m 3 of water. The effects of weather conditions on the growing cycle,
added to the water stress imposed to rice, resulted in grain yield decline and
low water productivity. The findings suggested the application of 3cm water
depth after reduced soil hairline cracks as an optimum water treatment for SRI
in dry season. Rice cropping period should also be adjusted to avoid the
critical temperatures.
Key words: System of Rice Intensification (SRI), soil hairlines cracks,
growth parameters, yield attributes, optimum water depth.
Table of Contents
ABSTRACT IV
ACKNOWLEDGEMENTS VI
TABLE OF CONTENTS VII
LIST OF TABLES XIII
LIST OF FIGURES XVI
ACRONYMS AND ABBREVIATIONS XVII
CHAPTER 1 INTRODUCTION 1
1.1 Study statement 1
1.2 Research objectives 8
1.3 Study outline and research Flow chart 8
CHAPTER 2 LITERATURE REVIEW 11
2.1 Conventional method (CM) versus alternate wetting and drying irrigation (AWD) in rice production 11
2.2 The system of rice intensification (SRI) 15
4.1.1 History and background of SRI 15
4.1.2 Water management in SRI 19
4.1.3 Advantages of SRI 24
4.1.4 Constraints of SRI 26
CHAPTER 3 MATERIALS AND METHODS 27
3.1 Materials 27
3.1.1 Experimental Site, Climate and Soil 27
3.1.2 Experimental design 28
3.1.3 Land preparation 30
3.1.4 Crop installation and management 31
3.1.5 Soil analyses 35
3.2 Methods 38
3.2.1 Irrigation and water management 38
3.2.2 Soil moisture content measurement 42
3.2.3 Plant growth parameters (PGP) assessment 44
3.2.3.1 Plant height 44
3.2.3.2 Leaf area index (LAI) 45
3.2.3.3 Plant chlorophyll content 46
3.2.4 Yield attributes and grain yield assessment 47
3.2.4.1 Tillers number, productive tillers number and tillering efficiency 48
3.2.4.2 Panicles number, length and weight determination 48
3.2.4.3 Comparison of spikelets number/panicle, filled spikelets and 1,000 grains weight 48
3.2.4.4 Grain yield and water productivity (WP) 49
3.2.5 Data analysis 50
CHAPTER 4 RESULTS AND DISCUSSIONS. 51
4.1 Climatic conditions and water management subjected to the experiment 51
4.1.1 Climatic conditions during the experiment 51
4.1.2 Effects of temperature on the development of rice 53
4.1.3 Irrigation plan and rainwater during the cropping season 58
4.1.3.1 Water application rate according to the treatment 58
4.1.3.2 Rainfall distribution during the experiment 59
4.1.3.3 Irrigated water and rain water received by the plots 61
4.2 Soil analysis and soil moisture trend during the experimental period 62
4.2.1 Soil analyses 62
4.2.1.1 Sieve analysis 62
4.2.1.2 Soil liquid limit test 63
4.2.1.3 Soil plastic limit test 64
4.2.1.4 Particle size analysis results 66
4.2.2 Soil moisture content evolution during the experiment 66
4.3 The rice cropping cycle from transplanting to harvesting 69
4.3.1 Vegetative stage (from germination to panicle initiation) 69
4.3.2 Reproductive stage (from panicle initiation (PI) to heading). 70
4.3.3 Ripening or maturation stage (from heading to maturity). 70
4.4 Plant growth parameters comparison 73
4.4.1 Comparison of plant height 73
4.4.2 Evolution of leaf area index (LAI) during the cropping season 77
4.4.3 Comparison of leaves chlorophyll content 82
4.5 Yield attributes and grain yield at harvesting 87
4.5.1 Tillers number, productive tillers and tillering efficiency 88
4.5.2 Panicles number, length and weight 90
4.5.3 Comparison of spikelet numbers/panicle, filled spikelets and 1000 grains weight 92
4.5.4 Grain yield at harvest and water productivity 95
4.6 Pests and diseases control during rice crop cycle 103
4.6.1 Pests control 103
4.6.2 Plant diseases control 104
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 105
5.1 Conclusion 105
5.2 Recommendations 107
5.3 Limitations of the Study 107
REFERENCES 108
APPENDIX 115
BIOGRAPHICAL SKETCH OF THE AUTHOR 119
References
Aschonitis V. G., Papamichail D. M., Lithourgidis A.& Fano E. A. (2014). Estimation of Leaf Area Index and Foliage Area Index of Rice using an Indirect Gravimetric Method. Communications in Soil Science and Plant Analysis, 45(13), 1726-1740. doi: 10.1080/00103624.2014.907917
ASTM. (2000). Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of soils. ASTM Designation: D 4318 – 00, 14.
Ata-Ul-Karim S. T., Zhu Y., Yao X.& Cao W. (2014). Determination of critical nitrogen dilution curve based on leaf area index in rice. Field Crops Research, 167, 76-85. doi: 10.1016/j.fcr.2014.07.010
Berkhout E., Glover D.& Kuyvenhoven A. (2015). On-farm impact of the System of Rice Intensification (SRI): Evidence and knowledge gaps. Agricultural Systems, 132, 157-166. doi: 10.1016/j.agsy.2014.10.001
Bouman B. A. M., Hengsdijk H., Bardy H., Bindraban P. S., Tuong T. P.& Ladha J. K. (2002). Water-wise Rice Production. Proceedings of the International Workshop on Water-wise Rice Production, 8-11 April 2002, Los Baños, Philippines. Los Baños (Philippines): International Rice Research Institute.( ), 356.
Chapagain T., Riseman A.& Yamaji E. (2011). Achieving More with Less Water: Alternate Wet and Dry Irrigation (AWDI) as an Alternative to the Conventional Water Management Practices in Rice Farming. Journal of Agricultural Science, 3(3). doi: 10.5539/jas.v3n3p3
Choudhury B. U., Singh A. K., Bouman B. A. M.& Prasad A. J. (2007). System of rice intensification and irrigated transplanted rice: Effect on crop water productivity. Journal of the Indian Society of Soil Science, Vol. 55, No. 4, pp 464-470 (2007), 8.
Chutia J.& Borah S. P. (2012). Water Stress Effects on Leaf Growth and Chlorophyll Content but Not the Grain Yield in Traditional Rice (Oryza sativa Linn.) Genotypes of Assam, India II. Protein and Proline Status in Seedlings under PEG Induced Water Stress. American Journal of Plant Sciences, 03(07), 971-980. doi: 10.4236/ajps.2012.37115
De Datta S. K. (1981). Principles and Practices of Rice Production. . John Wiley & Sons, Inc New York., 642.
Deichert G.& Yang S. K. (2002). Experiences with System of Rice Intensification (SRI) in Cambodia. Deutscher Tropentag, 7.
Devries M. E., Leffelaar P. A., Sakane N., Bado B. V.& Giller K. E. (2011). Adaptability of Irrigated Rice to Temperature Change in Sahelian Environments. Experimental Agriculture, 47(01), 69-87. doi: 10.1017/s0014479710001328
Dobermann A. (2004). A critical assessment of the system of rice intensification (SRI). Agricultural Systems, 79(3), 261-281. doi: 10.1016/s0308-521x(03)00087-8
Dominic G. (2011). Science, practice and the System of Rice Intensification in Indian agriculture. Food Policy, 36(6), 749-755. doi: 10.1016/j.foodpol.2011.07.008
F. T.-T., R. N.-D., Bayu W.& Gebeyehu S. (2013). Effect of farmyard manure and inorganic fertilizers on the growth, yield and moisture stress tolerance of rain-fed lowland rice. American Journal of Research Communication, 2013, Vol 1 (4): 275-301} www.usa-journals.com,, 27.
Fonteh M. F., Tabi F. O., Wariba A. M.& Zie a. J. (2013). Effective water management practices in irrigated rice to ensure food security and mitigate climate change in a tropical climate. Agriculture and Biology Journal of North America, 4(3), 284-290. doi: 10.5251/abjna.2013.4.3.284.290
Garcés-Varon G.& Restrepo-Díaz H. (2015). Growth and yield of rice cultivars sowed on different dates under tropical conditions. Ciencia e investigación agraria, 42(2), 8-8. doi: 10.4067/s0718-16202015000200008
Gopalakrishnan S., Mahender Kumar R., Humayun P., Srinivas V., Ratna Kumari B., Vijayabharathi R., Singh A., Surekha K., Padmavathi C., Somashekar N., Raghuveer Rao P., Latha P. C., Subba Rao L. V., Babu V. R., Viraktamath B. C., Vinod Goud V., Loganandhan N., Gujja B.& Rupela O. (2013). Assessment of different methods of rice (Oryza sativa. L) cultivation affecting growth parameters, soil chemical, biological, and microbiological properties, water saving, and grain yield in rice–rice system. Paddy and Water Environment, 12(1), 79-87. doi: 10.1007/s10333-013-0362-6
Greaves G. E.& Wang Y.-M. (2016). Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. Water, 8(12), 557. doi: 10.3390/w8120557
Hatfield J. L.& Prueger J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi: 10.1016/j.wace.2015.08.001
Holzman M., Rivas R., Carmona F.& Niclos R. (2017). A method for soil moisture probes calibration and validation of satellite estimates. MethodsX, 4, 243-249. doi: 10.1016/j.mex.2017.07.004
Hrubesova E., Lunackova B.& Brodzki O. (2016). Comparison of Liquid Limit of Soils Resulted from Casagrande Test and Modificated Cone Penetrometer Methodology. Procedia Engineering, 142, 364-370. doi: 10.1016/j.proeng.2016.02.063
K. Ramesh, B. Chandrasekaran, T. N. Balasubramanian, U. Bangarusamy, Sivasamy R.& Sankaran a. N. (2002). Chlorophyll Dynamics in Rice (Oryza sativa) Before and After Flowering Based on SPAD Chlorophyll) Meter Monitoring and its Relation with Grain Yield. J. Agronomy and Crop Science, 188, 102-105 (2002), 4.
Kar I., Sudhir-Yadav, Mishra A., Behera B., Khanda C., Kumar V.& Kumar A. (2018). Productivity trade-off with different water regimes and genotypes of rice under non-puddled conditions in Eastern India. Field Crops Res, 222, 218-229. doi: 10.1016/j.fcr.2017.10.007
Kassam A.& Brammer H. (2013). Combining sustainable agricultural production with economic and environmental benefits. The Geographical Journal, 179(1), 11-18. doi: 10.1111/j.1475-4959.2012.00465.x
Kima A. S. et al., A. S. Kima, Wen-Guey Chung, Wang Y.-M.& Traoré S. (2014). Evaluating water depths for high water productivity in irrigated lowland rice field by employing alternate wetting and drying technique under tropical climate conditions, Southern Taiwan. Paddy and Water Environment, 13(4), 379-389. doi: 10.1007/s10333-014-0458-7
Kima A. S., Chung W.-G.& Wang a. Y.-M. (2014). Improving Irrigated Lowland Rice Water Use Efficiency under Saturated Soil Culture for Adoption in Tropical Climate Conditions. Water, 6(9), 2830-2846. doi: 10.3390/w6092830
Kima E.& Wang Y.-M. (2017). Using CROPWAT 8.0 for intermittent irrigation scheduling and yield estimation of paddy rice under rainy season cropping in Pingtung southern Taiwan. Master’s Thesis, International Master Program in Soil and Water Engineering National Pingtung University of Science and Technology, 113.
Kissou O. J.& Wang Y.-M. (2017). A study on performances comparison of Alternate Wetting and Drying (AWD) Technique and System of Rice Intensification (SRI), Southern Taiwan. Master’s Thesis, International Master Program in Soil and Water Engineering National Pingtung University of Science and Technology, 94.
Kuo S.-F., Ho S.-S.& Liu C.-W. (2006). Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan. Agricultural Water Management, 82(3), 433-451. doi: 10.1016/j.agwat.2005.08.002
Latif M. A., Ali M. Y., Islam M. R., Badshah M. A.& Hasan M. S. (2009). Evaluation of management principles and performance of the System of Rice Intensification (SRI) in Bangladesh. Field Crops Research, 114(2), 255-262. doi: 10.1016/j.fcr.2009.08.006
Lekshmi S. U. S., Singh D. N.& Maryam S. B. (2014). A critical review of soil moisture measurement. Measurement, 54, 92-105. doi: 10.1016/j.measurement.2014.04.007
Lestari A. P., Suwarno, Trikoesoemaningtyas, Sopandie D.& Aswidinnoor H. (2015). Panicle Length and Weight Performance of F3 Population from Local and Introduction Hybridization of Rice Varieties. HAYATI Journal of Biosciences, 22(2), 87-92. doi: 10.4308/hjb.22.2.87
Liu X.-j., Cao Q., Yuan Z.-f., Liu X., Wang X.-l., Tian Y.-c., Cao W.-x.& Zhu Y. (2018). Leaf area index based nitrogen diagnosis in irrigated lowland rice. Journal of Integrative Agriculture, 17(1), 111-121. doi: 10.1016/s2095-3119(17)61714-3
Md Sarwar Jahan M. N. B. N., Mond Khairi Bin Che Lah, Yusop Mohd Khanif. (2013). Effects of Water Stress on Rice Production Bioavailability of Potassium in Soil. Journal of Stress Physiology & Biochemistry, Vol. 9 No. 2 2013,, pp. 97-107.
Ndiiri J. A., Mati B. M., Home P. G., Odongo B.& Uphoff N. (2013). Adoption, constraints and economic returns of paddy rice under the system of rice intensification in Mwea, Kenya. Agricultural Water Management, 129, 44-55. doi: 10.1016/j.agwat.2013.07.006
Ndiiri J. A., Uphoff N., Mati B. M., Home P. G.& Odongo B. (2017). Comparison of Yields of Paddy Rice Under System of Rice Intensification in Mwea, Kenya. American Journal of Plant Biology, Vol. 2, No. 2, 2017, pp. 49-60. doi: 10.11648/j.ajpb.20170202.12
Nyamai M., Mati B. M., Home P. G., Odongo B., Wanjogu R.& Thuranira E. G. (2012). Improving land and water productivity in the basin rice cultivation in Kenya through system of rice intensification (SRI). Agric Eng Int: CIGR Journal, 2012, 14(2): Manuscript No. 2094., 13.
Oort P. A. J. v. (2018). Mapping abiotic stresses for rice in Africa: Drought, cold, iron toxicity, salinity and sodicity. Field Crops Res, 219, 55-75. doi: 10.1016/j.fcr.2018.01.016
Pathak M. D.& Khan Z. R. (1994). Insect pests of Rice. International Rice Research Institute (IRRI), Los Baños (Philippines). 89.
Prabha A. C. S., Thiyagarajan T. M.& Senthivelu M. (2011). System of Rice Intensification Principles on Growth Parameters, Yield Attributes and Yields of Rice (Oryza sativa L.). Journal of Agronomy, 10: 27-33. doi: 10.3923/ja.2011.27.33
Prakash K., Sridharan A.& Prasanna a. H. S. (2009). A Note on the Determination of Plastic Limit of Fine Grained Soils. Geotechnical Testing Journal, Vol. 32 No.4 paper ID GTJI01960 Available online at: www.astm.org, 3.
Ranawake A. L., Amarasingha U. G. S.& Dahanayake N. (2013). Agronomic characters of some traditional rice (Oryza sativa L.) cultivars in Sri Lanka. J. Univ. Ruhuna 2013 1(1):3-9, Volume 1 Number 1, March 2013.
Rang Z. W., Jagadish S. V. K., Zhou Q. M., Craufurd P. Q.& Heuer S. (2011). Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 70(1), 58-65. doi: 10.1016/j.envexpbot.2010.08.009
Sato S.& Uphoff a. N. (2007). Raising Factor production in Irrigated Rice Production: opportunities with the System of Rice Intensification. CABI 2007.
Sridevi V.& Chellamuthu V. (2015). Growth analysis and yield of rice as affected by different System of Rice Intensification (SRI) practices. Impact Journals, Vol. 3, (Issue 4, Apr 2015, 29-36), 8.
Stoop W. A., Uphoff N.& Kassam A. (2002). A review of agricultural research issues raised by thesystem of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. Agricultural Systems 71 (2002) 249–274
Styger E. (2012). Increasing rice yields and saving water: Lessons for Policy and Practice-The System of Rice Intensification (SRI). Technical Centre for Agricultural and Rural Cooperation (CTA), 7.
Sudhir Y., Gill G., Humphreys E., Kukal S. S.& Walia U. S. (2011). Effect of water management on dry seeded and puddled transplanted rice. Part 1: Crop performance. Field Crops Research, 120(1), 112-122. doi: 10.1016/j.fcr.2010.09.002
Thakur A. K., Mandal K. G., Mohanty R. K.& Ambast S. K. (2018). Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management. Agricultural Water Management, 206, 67-77. doi: 10.1016/j.agwat.2018.04.027
Thakur A. K., Rath S.& Mandal K. G. (2013). Differential responses of system of rice intensification (SRI) and conventional flooded-rice management methods to applications of nitrogen fertilizer. Plant and Soil, 370(1-2), 59-71. doi: 10.1007/s11104-013-1612-5
Thakur A. K., Rath S., Patil D. U.& Kumar A. (2011). Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Paddy and Water Environment, 9(1), 13-24. doi: 10.1007/s10333-010-0236-0
Tuong P., Bouman B. A. M.& Mortimer M. (2005). More Rice, Less Water—Integrated Approaches for Increasing Water Productivity in Irrigated Rice-Based Systems in Asia. Plant Production Science, 8(3), 231-241. doi: 10.1626/pps.8.231
Uphoff N. (2007). Farmer Innovations Improving the System of Rice Intensification. Jumal Tanah dan Lingkungan, Vol. 9 No.2, 12.
Uphoff N. (2014a). Increasing water savings while raising rice yields with the System of Rice Intensification (SRI). Cornell International Institute for Food, Agriculture and Development, Cornell University, Ithaca, NY USA 14853, 18.
Uphoff N. (2014b). Questions and answers about the System of Rice Intensification (SRI) for raising the productivity of Land and Water. Cornell International Institute for Food, Agriculture and Development, 20.
Uphoff N. (2015). The System of Rice Intensification (SRI): responses to Frequently Asked Questions 226.
Uphoff N.& Kassam A. (2009). The system of rice intensification: a case study. Science and Technology Options Assessment (STOA), IPOL/A/STOA/2008-02, 57.
Uphoff N.& Randriamiharisoa R. (2002). Reducing water use in irrigated rice production with the Madagascar System of Rice Intensification (SRI). Cornell Institute for Public Affairs (CIPA, Cornell University, 17.
VDOT. (2016). Characteristics of soil and their relationship to compaction of soils. VDOT Soils and Aggregate Compaction, v1, 18.
Victoriano J. P.& Wang Y.-M. (2016). Evaluation for high water productivity and yield assessment of lowland paddy rice under controlled drainage and irrigation using the System of Rice Intensification (SRI). INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, Vol 5(Issue 11), 6.
Victoriano J. P.& Wang Y.-M. (2017a). Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan. Water, 9(1), 3. doi: 10.3390/w9010003
Victoriano J. P.& Wang Y.-M. (2017b). Utilizing rainfall and alternate wetting and drying irrigation for high water productivity in irrigated lowland paddy rice in southern Taiwan. Plant Production Science, 20(1), 24-35. doi: 10.1080/1343943x.2016.1242373
Wopereis M. C. S. et al. (2009). Curricular for Participatory Learning and Action Research (PLAR) for Integrated Rice Management (IRM) in Inland Valleys of Sub-Saharan Africa; Effects of temperature on rice development. Africa Rice Center (WARDA), 4.
Yadav S. (2011). Effect of Crop Establishment Method and Irrigation Schedule on Productivity and Water Use of Rice. The University of Adelaide, South Australia, 104.
Yao F., Huang J., Cui K., Nie L., Xiang J., Liu X., Wu W., Chen M.& Peng S. (2012). Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Research, 126, 16-22. doi: 10.1016/j.fcr.2011.09.018
Yoshida S. (1981). Fundamental of rice crop science. THE INTERNATIONAL RICE RESEARCH INSTITUTE, LOS BAÑOS, LAGUNA, PHILIPPINES, 279.
Yoshida S., Forno D. A., Cock J. H.& Gomez K. A. (1976). Laboratory Manual for Physiological Studies of Rice. THE INTERNATIONAL RICE RESEARCH INSTITUTE, LOS BAÑOS, LAGUNA, PHILIPPINES, 82.
Yuan Z., Ata-Ul-Karim S. T., Cao Q., Lu Z., Cao W., Zhu Y.& Liu X. (2016). Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Research, 185, 12-20. doi: 10.1016/j.fcr.2015.10.003
Zaman N. K., Abdullah M. Y.& Othman S. (2018). Growth and Physiological Performance of Aerobic and Lowland Rice as Affected by Water Stress at Selected Growth Stages. Rice Science, 25(2), 82-93. doi: 10.1016/j.rsci.2018.02.001
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top