跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張文馨
研究生(外文):Wen-Hsin Chang
論文名稱:含醯胺鍵的低分子量偶氮苯全像材料的合成與特性分析
論文名稱(外文):Synthesis and Characterization of Low Molecular Weight Azobenzene Materials Containing Amide Bonds for Holographic Materials
指導教授:蘇威宏
指導教授(外文):Wei-Hung Su
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:82
中文關鍵詞:基材氨基偶氮苯共價鍵光儲存材料偶氮苯
外文關鍵詞:Amino-azobenzeneAzo-benzeneOptical storagesubstrateCovalent bond
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以製備具有重複讀寫能力的全像儲存元件,其成分主要為偶氮笨複合材料,藉由雷射光激發,使偶氮苯分子進行順-反式的光異構化反應,作為光學儲存上的應用。
首先利用官能數為一的低分子量化合物苯甲醯氯(Benzoyl chloride,簡稱BC)與4-氨基偶氮苯(4-Aminoazobenzene,簡稱AAB)做為光致變色單體並以共價鍵的方式形成形成複合材料,由先前的研究發現低分子量的基材在光學特性上能有效縮短形成表面起伏光柵的時間,並快速地達到良好的繞射效率,所以材料BC為極有潛力的光學儲存元件,然而其分子量太小無法順利成膜,需添加高分子增加其成膜性。但在添加高分子成膜後,因高分子分子量過大,無法牽引基材,繞射效率值為零。
於是利用同樣為低分子量化合物但官能基數為三的1,3,5-苯三甲醯氯(1,3,5-Benzenetricarbonyl trichloride,簡稱BTC) 與AAB以共價鍵方式鍵結形成偶氮苯複合材料AT,由於BTC官能基數較多分子間的作用力較強烈,且分子量略大於BC,因此反應後不須添加高分子就能順利成膜。
事實上L.M. Goldenberg團隊8曾於2005年利用BTC與AAB鍵結形成偶氮苯複合材料,然而該團隊只討論BTC的三個官能基完全與偶氮苯鍵結之後的光學特性,其繞射效率在19分鐘達到23%。然而我們發現,若BTC的三個官能基不完全與偶氮苯鍵結,材料中含有不同官能基數的偶氮苯複合材料,能有效的提升繞射效率,並在特定比例下得到更加良好的光學性質。
由實驗結果得知,若材料中低官能基數化合物的比例越多,達到繞射效率的時間越快、值越大,在目前的實驗中,最佳樣品可在20分鐘時達到最大繞射效率為η=42.9%,為目前所知偶氮苯薄膜式光學儲存材料的最高繞射效率值。
另外,在進行AT重複讀寫的實驗中,材料的繞射效率會隨著讀寫次數增加而增加,在目前的實驗中,最佳樣品可在128分鐘達到最大繞射效率為η=57.21%。而且此材料在初次寫入及二次重複寫入後都能在短時間內將干涉點消除,此特性在目前已知的偶氮苯薄膜式光學儲存材料中重未發現。
材料合成與鑑定分析方面,透過核磁共振儀(NMR),確定材料AT以及AAB/BC的合成,並利用AFM觀察到表面起伏的形成。
由實驗數據顯示,材料AT的高繞射效率(57.21%)不僅可應用於光學儲存元件中,其快速消除、重建表面起伏光柵的能力也適用於通訊元件中,在光學的發展上極具潛力。
In this study, we prepared several azobenzene composites for optical storage. The light-induced interconversion allows azobenzene composites to be used as rewritable and erasable optical storage materials. 4-Aminoazobenzene (AAB) was selected as the pho-tochromic monomer, and two kinds of substrates with different low molecular weights were used to form composites by means of covalent bonds. The substrates used were (1,3,5-Benzenetricarbonyl trichloride, BTC), (Benzoyl chloride, BC).
The synthesis of materials AT and AAB/BC was determined by nuclear magnetic resonance (NMR), and the formation of surface relief gratings was observed by AFM.
According to L.M. Goldenberg team8, we change the parameters and make the ma-terial AT into a thin film, which diffraction efficiency reached 42.9% at 20 minutes, and η=57.21% at 128 minutes. Due to the low molecular weight of the material AAB/BC, the film-forming properties are poor and further optical measurements cannot be made.
The high diffraction efficiency (57.21%) of the material AT can be applied not only to the optical storage element, but also applicable to the communication element. This material is extremely excellent in optics .
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 原理與文獻回顧 4
2.1 全像術 4
2.2 全像儲存材料種類 7
2.2.1 鹵化銀材料(Silver halide emulsion) 7
2.2.2 光折變材料(Photorefractive crystal) 7
2.2.3 鉻酸鹽明膠(Dichromated Gelatin, DCG) 7
2.2.4 感光高分子材料(Photographic material) 8
2.3 偶氮苯聚合物文獻回顧 9
2.4偶氮苯聚合物光學性質 13
2.4.1光致變色系統(Photochromism) 13
2.4.2光致變系統機制 14
2.4.3順反異構型態 15
2.4.4表面起伏光柵(Surface Relief Grating) (SRG) 16
2.4.5全像光柵 17
2.5繞射效率(DIFFRACTION EFFICIENCY)計算方式 19
第三章 研究方法 20
3.1實驗藥品及材料 20
3.1.1藥品詳細資料 20
3.1.2 樣品代號 22
3.2實驗流程 22
3.2.1材料AT製程 22
3.2. 材料AAB/BC製程 24
3.3全像干涉紀錄與讀取 26
3.3.1實驗設備 26
3.3.2實驗架構 27
3.4實驗儀器及分析方法 29
3.4.1光功率計(Power Meter) 29
3.4.2旋轉塗佈機(Spin Coater) 29
3.4.3 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer, NMR) 29
3.4.4 原子力顯微鏡(Atomic Force Microscopy, AFM) 30
3.4.5 三維輪廓儀(Alpha-step Profilometer) 30
第四章 實驗及其鑑定與光學特性分析 31
4.1 材料BC/AAB鑑定與光學特性分析材料 31
4.1.1 NMR核磁共振光譜儀檢測(NMR) 31
4.1.2 材料成膜性探討 32
4.1.3光學特性 33
4.2材料AT鑑定與光學特性分析材料 35
4.2.1 NMR核磁共振光譜儀檢測(NMR) 35
4.2.2光學特性 44
第五章 分析與討論 62
第六章 結論 64
第七章 建議未來工作 65
參考文獻 66
1.Bruder, F. K.; Hagen, R.; Roelle, T.; Weiser, M. S.; Fäcke, T., From the surface to volume: concepts for the next generation of optical–holographic data‐storage materials. Angewandte Chemie International Edition 2011, 50 (20), 4552-4573.
2.Ashley, J.; Bernal, M.-P.; Burr, G. W.; Coufal, H.; Guenther, H.; Hoffnagle, J. A.; Jefferson, C. M.; Marcus, B.; Macfarlane, R. M.; Shelby, R. M., Holographic data storage technology. IBM journal of research and development 2000, 44 (3), 341-368.
3.Staebler, D.; Burke, W.; Phillips, W.; Amodei, J., Multiple storage and erasure of fixed holograms in Fe− doped LiNbO3. Applied Physics Letters 1975, 26 (4), 182-184.
4.Ford, J. E.; Fainman, Y.; Lee, S. H., Array interconnection by phase-coded optical correlation. Optics letters 1990, 15 (19), 1088-1090.
5.Francis, T.; Wu, S.; Mayers, A. W.; Rajan, S., Wavelength multiplexed reflection matched spatial filters using LiNbO3. Optics communications 1991, 81 (6), 343-347.
6.Sutherland, R. L.; Natarajan, L. V.; Tondiglia, V. P.; Bunning, T. J.; Adams, W. W. In Development of photopolymer-liquid crystal composite materials for dynamic hologram applications, SPIE Proceedings, 1994, 303-313.
7.Kawabata, M.; Sato, A.; Sumiyoshi, I.; Kubota, T., Photopolymer system and its application to a color hologram. Applied optics 1994, 33 (11), 2152-2156.
8.Goldenberg, L. M.; Kulikovsky, L.; Kulikovska, O.; Tomczyk, J.; Stumpe, J., Thin layers of low molecular azobenzene materials with effective light-induced mass transport. Langmuir 2010, 26 (4), 2214-2217.
9.Goldenberg, L. M.; Kulikovska, O.; Stumpe, J., Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte. Langmuir 2005, 21 (11), 4794-4796.
10.Piazzolla, S.; Jenkins, B. K., First-harmonic diffusion model for holographic grating formation in photopolymers. JOSA B 2000, 17 (7), 1147-1157.
11.Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.; Abramowicz, H., Search for scalar diphoton resonances in the mass range 65–600 GeV with the ATLAS detector in p p collision data at s= 8 TeV. Physical review letters 2014, 113 (17), 171801.
12.Zhao, Y.; Ikeda, T., Smart light-responsive materials: azobenzene-containing polymers and liquid crystals. John Wiley & Sons 2009, 1-521.
13.Wang, L.-Y., Synthesis and Characterization of Azobenzene with BAA, PPI, or TPGA for Holographic Storage. Master Thesis,National Sun Yat-sen University 2015, 1-72.
14.Gabor, D.; Stroke, G.; Brumm, D.; Funkhouser, A.; Labeyrie, A., Reconstruction of phase objects by holography. Nature 1965, 208 (5016), 1159-1162.
15.Sarid, D.; Schechtman, B. H., A roadmap for optical data storage applications. Optics and photonics news 2007, 18 (5), 32-37.
16.Burr, G. W.; Coufal, H.; Hoffnagle, J. A.; Jefferson, C. M.; Jurich, M.; Marcus, B.; Macfarlane, R. M.; Shelby, R. M., Optical data storage enters a new dimension. Physics World 2000, 13 (7), 37.
17.Japan-Broadcasting-Corporation-Science-&-Technology-Research-Laboratories. High-density Holographic Recording Technology. http://www.nhk.or.jp/strl/open2010/index.html (accessed online).
18.Graver, W. R.; Gladden, J. W.; Eastes, J. W., Phase holograms formed by silver halide (sensitized) gelatin processing. Applied optics 1980, 19 (9), 1529-1536.
19.Gleeson, M. R.; Sheridan, J. T., A review of the modelling of free-radical photopolymerization in the formation of holographic gratings. Journal of optics A: pure and applied optics 2009, 11 (2), 024008.
20.Nakano, H.; Takahashi, T.; Kadota, T.; Shirota, Y., Formation of a Surface Relief Grating Using a Novel Azobenzene‐Based Photochromic Amorphous Molecular Material. Advanced Materials 2002, 14 (16), 1157-1160.
21.Oliveira, O. N.; dos Santos, D. S.; Balogh, D. T.; Zucolotto, V.; Mendonça, C. R., Optical storage and surface-relief gratings in azobenzene-containing nanostructured films. Advances in colloid and interface science 2005, 116 (1), 179-192.
22.Kuo, C.-T.; Huang, S.-Y., Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals. Applied physics letters 2006, 89 (11), 111109.
23.Nakano, H.; Tanino, T.; Takahashi, T.; Ando, H.; Shirota, Y., Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials. Journal of Materials Chemistry 2008, 18 (2), 242-246.
24.He, T.; Cheng, Y.; Du, Y.; Mo, Y., Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films. Optics communications 2007, 275 (1), 240-244.
25.Vapaavuori, J.; Priimagi, A.; Kaivola, M., Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes. Journal of Materials Chemistry 2010, 20 (25), 5260-5264.
26.Chen, C.-H., Synthesis and characterization of azobenzene/silica composites for optical applications. Master Thesis,National Sun Yat-sen University 2013,1-49.
27.Kirby, R.; Sabat, R. G.; Nunzi, J.-M.; Lebel, O., Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation. Journal of Materials Chemistry C 2014, 2 (5), 841-847.
28.Tseng, Y.-P., Synthesis of Azobenzene-Based Composites and Its Optical Characterization. Master Thesis,National Sun Yat-sen University 2014, 1-78.
29.Lan, W.-l., Matrix Effect of Azobenzene-based Holographic Storage Materials. Master Thesis,National Sun Yat-sen University 2016, 1-70.
30.Weng, K.-J., Effect of Matrix Structure on the Holographic Storage Efficiency of Azobenzene based Composites. Master Thesis,National Sun Yat-sen University 2017, 1-31.
31.Bouas-Laurent, H.; Dürr, H., Organic photochromism (IUPAC technical report). Pure and Applied Chemistry 2001, 73 (4), 639-665.
32.Kawai, T.; Nakashima, Y.; Irie, M., A Novel Photoresponsive π‐Conjugated Polymer Based on Diarylethene and its Photoswitching Effect in Electrical Conductivity. Advanced Materials 2005, 17 (3), 309-314.
33.Phipson, T., Zum Nachweis des Rhinanthins. Fresenius'' Journal of Analytical Chemistry 1889, 28 (1), 354-354.
34.Asiri, A. M., Synthesis and photochromism of E, E-3, 4-(3, 5-dimethoxybenzylidene) succinic anhydride and its infra red active 2-dicyanomethylene derivative. Journal of Photochemistry and Photobiology A: Chemistry 2003, 159 (1), 1-5.
35.Hirshberg, Y.; Bergmann, E.; Bergmann, F., Absorption Spectra and Photo-isomerization of Arylated Dienes. Journal of the American Chemical Society 1950, 72 (11), 5120-5123.
36.Vogt, G.; Krampert, G.; Niklaus, P.; Nuernberger, P.; Gerber, G., Optimal control of photoisomerization. Physical review letters 2005, 94 (6), 068305.
37.Priimägi, A., Polymer-azobenzene complexes: from supramolecular concepts to efficient photoresponsive polymers. 2009, 1-42
38.Yager, K. G.; Barrett, C. J., All-optical patterning of azo polymer films. Current opinion in solid state and materials science 2001, 5 (6), 487-494.
39.Viswanathan, N. K.; Balasubramanian, S.; Li, L.; Tripathy, S. K.; Kumar, J., A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films. Japanese journal of applied physics 1999, 38 (10R), 5928.
40.Lee, C.-R., Studies of Holographic Grating Recordings and Their Applications based on Azo-Dye-Doped Polymer-Ball-Type Polymer-Dispersed Liquid Crystal Films. Doctoral thesis, National Cheng Kung University 2003, 1-94.
41.Klein, W.; Cook, B. D., Unified approach to ultrasonic light diffraction. IEEE Transactions on sonics and ultrasonics 1967, 14 (3), 123-134.
42.Kogelnik, H., Coupled wave theory for thick hologram gratings. Bell Labs Technical Journal 1969, 48 (9), 2909-2947.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top