跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭琳樺
研究生(外文):Ling-Hua Cheng
論文名稱:對側噪音對於高頻聽損合併耳鳴者在噪音中語音辨識及耳聲傳射的影響
論文名稱(外文):Effects of Contralateral Noise Stimulation on Speech-in-Noise Perception and Otoacoustic Emissions in Patients with High Frequency Hearing Loss and Tinnitus
指導教授:王智弘王智弘引用關係陳郁夫陳郁夫引用關係
指導教授(外文):Chih-Hung WangYu-Fu Chen
口試委員:黃啟原徐建業
口試委員(外文):Chi-Yuan HuangChien-Yeh Hsu
口試日期:2018-07-04
學位類別:碩士
校院名稱:國立臺北護理健康大學
系所名稱:語言治療與聽力研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:36
中文關鍵詞:聽覺下行神經路徑變頻耳聲傳射噪音中語音辨識感音性聽損耳鳴
外文關鍵詞:auditory efferent pathwaydistortion-product otoacoustic emissionssensorineural hearing lossspeech-in-noise perceptiontinnitus
相關次數:
  • 被引用被引用:1
  • 點閱點閱:580
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
研究目的:聽覺下行神經的對側抑制功能可以透過測量誘發性耳聲傳射(evoked otoacoustic emissions, EOAEs)振幅及噪音中語音辨識表現來評估。一般而言,在給予對側噪音情況下,受測耳誘發性耳聲傳射振幅會下降,而噪音中語音辨識表現會變好。對於聽力正常無耳鳴者,有些研究發現誘發性耳聲傳射振幅的對側抑制量與噪音中語音辨識表現的提升量有顯著正相關,有些研究則無發現有顯著關聯。本研究欲探討無耳鳴者及有耳鳴者在給予對側噪音情況下,受測耳變頻耳聲傳射(distortion product OAE, DPOAE)振幅對側抑制量與噪音中語音辨識表現提升量兩者間的關係。
研究方法:本研究招募有高頻聽損合耳鳴者(實驗組)19名及聽力正常無耳鳴者(控制組)20名。控制組年齡介於25至53歲(平均35歲,標準差9.2歲),實驗組年齡介於21至55歲(平均44.3歲,標準差11.5歲)。納案的實驗組必須是實驗進行時雙側耳朵至少有持續三個月以上的主觀性耳鳴,且0.25到8 k Hz每一八度音程音階的純音聽力閾值小於40 dB HL。在給予對側噪音的前、後,分別紀錄研究參與者受測耳的變頻耳聲傳射振幅及噪音中語音辨識表現。
研究結果:實驗組及控制組,在給予對側噪音的情況下,受測耳在測試頻率f2為1312 Hz及2343 Hz的變頻耳聲傳射振幅皆變小,且噪音中的語音辨識表現皆顯著提升。此外,無耳鳴的控制組的變頻耳聲傳射振幅,當測試頻率f2為2343 Hz時,對側抑制量與噪音中語音辨識表現提升量呈顯著正相關;然而對於有耳鳴的實驗組,並沒有發現變頻耳聲傳射振幅的對側抑制量與噪音中語音辨識表現提升量間有顯著關聯。
結論:不論是高頻聽損併有耳鳴者或正常聽力無耳鳴者,於非受測耳播放噪音都會降低受測耳變頻耳聲傳射的振幅,並且提升受測耳噪音中語音辨識的表現。雖然進一步可觀察到聽力正常無耳鳴者的變頻耳聲傳射振幅對側抑制量與噪音中語音辨識表現提升量呈顯著正相關,但於高頻聽損併有耳鳴者卻無相同的觀察發現。本研究受限於人數的限制,未來應招募更多的受試者以進行更適當的分析比較。
Purpose: Function of auditory efferent pathway on olivocochlear system can be evaluated by measuring contralateral suppression of evoked otoacoustic emissions (EOAEs) and speech-in-noise perception (SINP). For normal hearing subjects, previous studies found that when sufficient noise was delivered to the contralateral ear, there will be a positive correlation between the amount of suppression on the EOAEs amplitude and the amount of change in signal-to-noise ratio (SNR) of improvement on speech-in-noise perception. However, there is still controversy about conclusive evidence shown by the other studies. The purpose of the present study is to examine the differential effects of contralateral noise on the distortion-products OAE (DPOAE) and speech-in-noise perception for both high-frequency hearing loss subjects with tinnitus and normal hearing subjects without tinnitus.
Methods: The study comprised 39 participants, performed on 20 normal hearing subjects as the control group, 6 men and 14 women, 25 to 53 years old (mean = 35 years, SD = 9.2 ), and on 19 patients with tinnitus and high-frequency sensorineural hearing loss as the experimental group, 2 men and 17 women, 21 to 55 years old (mean = 44.3 years, SD = 11.5 ). Recruited subjects in the experimental group their hearing loss should be less than 40 dB HL at each of the measured octave intervals from 0.25 to 8 kHz. The DPOAE and speech-in-noise perception were measured in the test ear with and without the presence of contralateral noise.
Results: Contralateral noise stimulation decreased DPOAE amplitudes in each group. Meanwhile, the improvement of speech-in-noise perception in the test ear was observed in each group but the significant difference only present on two frequencies in which f2 was 1312 Hz and 2343 Hz. In the control group, a positive correlation can be seen between the suppression amounts of the DPOAE amplitude and the improved change of SNR at the frequency of 2343 Hz. Whereas such a correlation was not observed in the experimental group.
Conclusion: The presence of contralateral noise can reduce the DPOAE amplitude and improve the speech-in-noise perception for normal listeners and high-frequency hearing-impaired listeners with tinnitus. However, in our current study with limited participants, only listeners with normal hearing present a correlation between SINP changes and the amount of DPOAE contralateral suppression. Further studies by increasing the sample size are required to allow optimal analysis.
中文摘要 i
英文摘要 iii
表  次 vii
圖  次 viii
第一章 緒論 1
第二章 文獻探討 2
第一節 有交叉內側橄欖耳蝸神經束 2
第二節 耳鳴患者聽覺下行神經的對側抑制表現 8
第三章 研究動機與目的 12
第四章 研究方法 13
第一節 研究參與者 13
第二節 語音噪音與寬頻噪音的製作 15
第三節 系統性失真 16
第四節 研究程序 16
第五章 研究結果 21
第一節 對側噪音對於變頻耳聲傳射之影響 21
第二節 對側噪音對於噪音中語音辨識表現之影響 25
第三節 變頻耳聲傳射對側抑制量與噪音中語音辨識表現提升量之關係 29
第六章 討論 31
第一節 對側噪音下變頻耳聲傳射之表現 31
第二節 對側噪音下語音辨識之表現 33
第三節 對側噪音下語音辨識表現與變頻耳聲傳射表現間之關係 34
第四節 研究限制與建議 35
第七章 結論 36
參考文獻 37




Abdala, C. (1996). Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates. J Acoust Soc Am., 100(6), pp. 3726-3740.
Abdala, C., Ma, E., & Sininger, Y. (1999, 4). Maturation of medial efferent system function in humans. J Acoust Soc Am., 105(4), pp. 2392-2402.
Abdollahi, F. Z., & Lotfi, Y. (2011). Gender Difference in TEOAEs and Contralateral Suppression of TEOAEs in Normal Hearing Adults. Iran Rehabilitation Journal, 9(2), pp. 22-25.
Andersson, G. (2002). Psychological Aspects Of Tinnitus And The Application Of cognitive-behavioral therapy. Clin Psychol Rev., pp. 977–990.
Attramadal, I. K., Lind, O., Plante, E., Cone, B., & Asbjørnsen, A. E. (2017). Lateralized and Sex-Specific Effects for a Relationship between the MOC Reflex and Response Time to Auditory Events in Nois. Hearing health and technology matters, pp. 1-24.
Avan, P., & Bonfils, P. (1993). Frequency specificity of human distortion product otoacoustic emissions. Audiology., 32(1), pp. 12-26.
Axelsson, A., & Sandh, A. (1985). Tinnitus in noise-induced hearing loss. Br J Audiol, 19(4), pp. 271-276.
Barnea, G., Attias, J., Gold, S., & Shahar, A. (1990). Tinnitus with normal hearing sensitivity: extended high-frequency audiometry and auditory-nerve brain-stem-evoked responses. Audiology., 29(1), pp. 36-45.
Berlin, C. I., Hood, L. J., Hurley, A. E., Wen, H., & Kemp, D. T. (1995). Binaural noise suppresses linear click-evoked otoacoustic emissions more than ipsilateral or contralateral noise. Hear Res. , 87(1-2), pp. 96-103.
Berlin, C. I., Hood, L. J., Wen, H., Szabo, P., Cecola, R. P., Rigby, P., & Jackson, D. F. (1993). Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hear Res., 71(1-2), pp. 1-11.
Berlin, I. C., Hood, J. L., Hurley, A., & Wen, H. (1994). The first Jerger lecture: Contralateral suppression of otoacoustic emissions: An index of the function of the medial olivocochlear system. . Otolaryngol Head Neck Surg. , 110(1), pp. 3-21.
Bidelman, G. M., & Bhagat, S. P. (2015). Right-ear advantage drives the link between olivocochlear efferent 'antimasking' and speech-in-noise listening benefits. Neuroreport., 26(8), pp. 483-487.
Brown, A. M., & Kemp, D. T. (1984). Suppressibility of the 2 f1- f2 stimulated acoustic emissions in gerbil and man. Hear Res., 13(1), pp. 29-37.
Brownell, W. E. (1990). Outer hair cell electromotility and otoacoustic emissions. Ear Hear., 11(2), pp. 82-92.
Buzo, B. C., & Lopes, J. d. (2017). Speech recognition in noise in individuals with normal hearing and tinnitus. Audiol., Commun. Res., 22.
Castor, X., Veuillet, E., Morgon, A., & Collet, L. (1994). Influence of aging on active cochlear micromechanical properties and on the medial olivocochlear system in humans. Hear Res., 77(1-2), pp. 1-8.
Champlin, C. A., Muller, S. P., & Mitchell, S. A. (1990). Acoustic measurements of objective tinnitus. J Speech Hear Res., 33(4), pp. 816-821.
Chang , M. Y., Song, J. J., Kim, J. S., & Koo , J. W. (n.d.). Contralateral suppression of distortion-product otoacoustic emissions: a potential diagnostic tool to evaluate the vestibular nerve. Med Hypotheses., 81(5), pp. 830-833.
Coelho, C. B., Langguth, B., & DeRidder, D. (2011). Epidemiology of tinnitus in children. (T. Kleinjung, Ed.) New York: Springer.
Collet, L., Kemp, D. T., Veuillet, E., Duclaux, R., Moulin, A., & Morgon, A. (1990). Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res., 43(2-3), pp. 251-261.
Dahr, S., Long, G. R., & Culpepper, N. B. (1998). The Dependence of the Distortion Product 2f1-f2 on Primary Levels in Non-Impaired Human Ears. Journal of Speech, Language, and Hearing Research, 41(6), pp. 1307-1318.
Daniell, E. W., Fulton-Kehoe, D., Smith-Weller, T., & Franklin, M. G. (1998). Occupational hearing loss in Washington state, 1984-1991: II. Morbidity and associated costs. Am J Ind Med, 33, pp. 529-536.
Dubno, R. J., Dirks, D. D., & Morgan, E. D. (1984). Effects of age and mild hearing loss on speech recognition in noise. J Acoust Soc Am., 76(1), pp. 87-96.
Elsisy, H., & Krishnan, A. (2008). Comparison of the acoustic and neural distortion product at 2f1-f2 in normal-hearing adults. Int J Audiol., 47(7), pp. 431-438.
Fávero, M. L., Sanchez, T. G., Bento, R. F., & Nascimento, A. F. (2006). Contralateral suppression of otoacoustic emission in patients with tinnitus. Bras. J Otorrinolaringol., 72(2), pp. 223-226.
Fernandes, L. C., & Santos, T. M. (2009). Tinnitus and normal hearing: a study on the transient otoacoustic emissions suppression. Braz J Otorhinolaryngol., 75(3), pp. 414-419.
Francis, A. N., & Guinan, J. J. (2010). Acoustic stimulation of human medial olivocochlear efferents reduces stimulus frequency- and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths. Hear Res., 267(1-2), pp. 36-45.
Garinis, A. C., Glattke, T., & Conea, B. K. (2011). The MOC Reflex During Active Listening to Speech. J Speech Lang Hear Res., 54(5), pp. 1464-1476.
GarinisA., WernerL., & AbdalaC. (2011). The relationship between MOC reflex and masked threshold. Hear Res., 282(1-2), 頁 128-137.
Gaskill, S. A., & Brown, A. M. (1990). The behavior of the acoustic distortion product, 2f1-f2, from the human ear and its relation to auditory sensitivity. J Acoust Soc Am., 88(2), pp. 821-839.
Gelfand, S. A. (2009). Essentials of Audiology (3 ed.). Thieme.
Gentil , F., Meireles, S., Roza , T., Santos, C., & Parente, M. (2015). Comparison of otoacoustic emissions in patients with tinnitus having normal hearing versus mild hearing loss. Int Tinnitus J., 19(2), pp. 39-46.
Geven I.L., de KleineE., FreeH.R., & van Dijk P. (2011). Contralateral suppression of otoacoustic emissions in tinnitus patients. Otol Neurotol., 32(2), 頁 315-321.
GillesA, SchleeW, RabauS, WoutersK, FransenE, & Van de HeyningP. (2016). Decreased Speech-In-Noise Understanding in Young Adults with Tinnitus. Front Neurosci., 10(288).
Giraud, A. L., Garnier, S., Micheyl, C., Lina, G., Chays, A., & Chéry-Croze, S. (1997). Auditory efferents involved in speech-in-noise intelligibility. Neuroreport., 8(7), pp. 1779-1783.
Giraud, L. A., Collet, L., Chéry-Croze, S., Magnan, J., & Chays, A. (1995). Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans. Brain Res., 705(1-2), pp. 15-23.
Graham, R. L., & Hazell, J. W. (1994). Contralateral suppression of transient evoked otoacoustic emissions: intra-individual variability in tinnitus and normal subjects. Br J Audiol., 28(4-5), pp. 235-245.
Guinan, J. J. (2006, 12). Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear., 27(6), pp. 589-607.
Hall, J. W. (2013). Introduction to Audiology Today (1st ed.). Pearson.
Harris, F. P., Lonsbury-Martin, B. L., Stagner, B. B., Coats, A. C., & Martin, G. K. (1989). Acoustic distortion products in humans: systematic changes in amplitudes as a function of f2/f1 ratio. J Acoust Soc Am., 85(1), pp. 220-229.
Henry, J. A. (2004). Audiologic Assessment. (J. Snow, Ed.) Ontario: BC Decker Inc.
Hienz , R. D., Stiles, P., & May, B. J. (1998). Effects of bilateral olivocochlear lesions on vowel formant discrimination in cats. Hear Res., 116(1-2), pp. 10-20.
Hood, J. L., Berlin, I. C., Hurley, A., Cecola, P. R., & Bell, B. (1996). Contralateral suppression of transient-evoked otoacoustic emissions in humans: intensity effects. Hear Res., 101(1-2), pp. 113-118.
Jang, H., Koo, S., Kim, S., & Lim, D. (2006). Suppression of DPOAE with Various Noise Bands under Contralateral Stimulation in Normal Hearing Adults. Audiol Speech Res., 2(2), pp. 147-154.
Jastreboff, J. P. (1990). Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci, pp. 221-254.
Kaf, W., & Danesh, A. (2013). Distortion-product otoacoustic emissions and contralateral suppression findings in children with Asperger's Syndrome. Int J Pediatr Otorhinolaryngol. , 77(6), pp. 947-954.
Katz, J., Chasin, M., English, K., Hood, L. J., & Tillery, K. L. (2014). Handbook of Clinical Audiology (7th edition ed.). Wolters Kluwer Health.
Kemp, T. D. (1978). Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am., 64(5), pp. 1386-1391.
Kentish, R. C. (2016). Managing tinnitus in childhood. (D. Baguley , & M. Fagelson, Eds.) San Diego, CA, San Diego: Plural Publishing Inc.
Khalfa, S., Veuillet , E., & Collet, L. (1998). Influence of handedness on peripheral auditory asymmetry. Eur. J. Neurosci., 8, pp. 2731–2737.
Kim , S. H., Frisina, D. R., & Frisina , R. D. (2002). Effects of Age on Contralateral Suppression of Distortion Product Otoacoustic Emissions in Human Listeners with Normal Hearing. Audiol. Neurootol., 7, pp. 348–357.
Kim, H. S., Frisina, R. D., & Frisina, D. R. (2006). Effects of age on speech understanding in normal hearing listeners: Relationship between the auditory efferent system and speech intelligibility in noise. Speech Communication, 48(7), pp. 855-862.
Knudson, I. M., Shera, C. A., & Melcher, J. R. (2014). Increased contralateral suppression of otoacoustic emissions indicates a hyperresponsive medial olivocochlear system in humans with tinnitus and hyperacusis. J Neurophysiol., 112(12), pp. 3197-3208.
Komis, A., Maragkoudakis, P., Gkoritsa, E., Kandiloros, D., Korres, S., Ferekidis, E., & Nikolopoulos, T. (2014). The effect of tinnitus and presbycusis on contralateral suppression of otoacoustic emissions. Journal of Hearing Science, 4(4), pp. 9-20.
Kumar, U., & Vanaja, C. (2004). Functioning of Olivocochlear Bundle and Speech Perception in Noise. Ear Hear., 25, pp. 142-146.
Leske , M. C. (1981). Prevalence estimates of communicative disorders in the U.S. Language, hearing and vestibular disorders. ASHA., 23(3), 229-237.
Li, A., & Martin, F. N. (1983). Development of materials for determination of the speech reception threshold in Chinese. Chinese Medical Journal, 32, pp. 282-288.
Liberman , M. C., & Brown , M. C. (1986). Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res., 24(1), pp. 17-36.
Liberman, C. M., Puri, S., & Guinan, J. J. (1996). The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. J Acoust Soc Am., 99(6), pp. 3572-3584.
Lockwood, A. H., Salvi, R. J., & Burkard, R. F. (2002). Tinnitus. N Engl J Med., 347(12), pp. 904-910.
Lonsbury-Martin, B. L., Whitehead, M. L., & Martin, G. K. (1993). Distortion-product otoacoustic emissions in normal and imparied ears: Insight into generation processes. (J. Allum, D. J. Allum-Mecklenburg, F. P. Harris, & R. Probst, Eds.) Progress in Brain Research, 97, 77-90.
Maison, S., Micheyl, C., Andéol G, G., Gallégo, S., & Collet, L. (2000). Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Hea Res, 140(1-2), pp. 111-125.
Martin, F. N., & Clark, J. G. (2016). Introduction to Audiology (7th edition ed.). Pearson College Div.
Martin, G. K., Lonsbury-Martin, B. L., Probst, R., Scheinin, S. A., & Coats, A. C. (1987). Acoustic distortion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and pure-tone exposures. Hear Res., 28(2-3), pp. 191-208.
Mattock, K., & Burnham, D. (2006). Chinese and English Infants' Tone Perception: Evidence for Perceptual Reorganization. Infancy, 10(3), pp. 241-265.
May, B. J., & McQuone, S. J. (1995). Effects of Bilateral Olivocochlear Lesions on Pure-Tone Intensity Discrimination in Cats. Audit Neurosci., 1(4), pp. 385-400.
Mertes, B. I., & Leek, R. M. (2016). Concurrent measures of contralateral suppression of transient-evoked otoacoustic emissions and of auditory steady-state responses. J Acoust Soc Am., 140(3), pp. 2027-2038.
Micheyl, C., & Collet, L. (1996). Involvement of the olivocochlear bundle in the detection of tones in noise. J Acoust Soc Am., pp. 1604-1610.
MicheylC., MorletT., GiraudL.A., ColletL., & MorgonA. (1995). Contralateral suppression of evoked otoacoustic emissions and detection of a multi-tone complex in noise. Acta Otolaryngol., 115(2), 頁 178-182.
Mishra, K. S., & Lutman, E. M. (2014). Top-Down Influences of the Medial Olivocochlear Efferent System in Speech Perception in Noise. PLOS ONE, 9(1).
Modh , D., Katarkar, A., Alam, N., Jain, A., & Shah, P. (2014). Relation of distortion product otoacoustic emission and tinnitus in normal hearing patients: a pilot study. Noise Health., 16(69), pp. 69-72.
Moulin, A., & Carrier, S. (1998). Time course of the medial olivocochlear efferent effect on otoacoustic emissions in humans. Neuroreport., 9(16), pp. 3741-3744.
Moulin, A., Collet, L., & Duclaux, R. (1993). Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res., 65(1-2), pp. 193-210.
Mountain, D. C. (1980). Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. 210(4465), pp. 71-72.
Newman, C. W., Wharton, J. A., Shivapuja, B. G., & Jacobson, G. P. (1994). Relationships among psychoacoustic judgments, speech understanding ability and self-perceived handicap in tinnitus subjects. Audiology., 33(1), pp. 47-60.
Nondahl, M. D., Cruickshanks, J. K., Wiley, L. T., Klein, R., Klein, E. B., & Tweed, S. T. (2002). Prevalence and 5-year incidence of tinnitus among older adults: the epidemiology of hearing loss study. J Am Acad Audiol, 13(6), pp. 323-331.
Nore˜na, J. A. (2011). An Integrative Model Of Tinnitus Based On A central Gain Controlling Neural sensitivity. Neurosci Biobehav Rev., 35(5), pp. 1089-1109.
Norman, M., & Thornton, R. A. (1993). Frequency analysis of the contralateral suppression of evoked otoacoustic emissions by narrow-band noise. Br J Audiol., 27(4), pp. 281-289.
Paglialonga , A., Del Bo , L., Ravazzani , P., & Tognola, G. (2010). Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: multiparametric recording of evoked otoacoustic emissions and contralateral suppression. Auris Nasus Larynx., 37(3), pp. 291-298.
Panagiota, L., Stavros , H., Guiscardo, L., Krzysztof , K., Lech, S., & Henryk, S. (2011). A connection between the Efferent Auditory System and Noise-Induced Tinnitus Generation. Reduced contralateral suppression of TEOAEs in patients with noise-induced tinnitus. A connection between the Efferent Auditory System and Noise-Induced Tinnitus GenerationMed Sci Monit., 17(7), pp. 56–62.
Park, J. Y., Clark, W. W., Coticchia, J. M., Esselman, G. H., & Fredrickson, J. M. (1995). Distortion product otoacoustic emissions in rhesus (Macaca mulatta) monkey ears: normative findings. Hear Res., 86(1-2), pp. 147-162.
Parthasarathy, K. T. (2001). Aging and contralateral suppression effects on transient evoked otoacoustic emissions. 12, pp. 80-85.
Peterson, G. E., & Barney, H. L. (1952). Control Methods Used in a Study of the Vowels. The Journal of the Acoustical Society of America, 24(2), pp. 175-184.
Rasmussen, G. L. (1946). The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol., 84, pp. 141-219.
Reed, G. F. (1960). An audiometric study of two hundred cases of subjective tinnitus. AMA Arch Otolaryngol., 71, pp. 84-94.
Regan, D. (1989). Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. 12(10), pp. 413-414.
Reiter, R. E., & Liberman, C. M. (1995). Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol., 73(2), pp. 506–514.
Rhode, W. S., & Cooper, N. P. (1993). Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae. Hear Res., 66(1), pp. 31-45.
Richter, B., Hauser, R., & Löhle, E. (1995). Effect of contralateral noise exposure on otoacoustic distortion product emissions in man. Laryngorhinootologie., 74(4), pp. 160-166.
Riga, M., Komis , A., Marangoudakis, P., Naxakis, S., Ferekidis, E., Kandiloros, D., & Danielides, V. (2017). Differences in the suppression of distortion product otoacoustic emissions by contralateral white noise between patients with acute or chronic tinnitus. Int J Audiol., 56(8), pp. 589-595.
Riga, M., Papadas, T., Werner, J. A., & Dalchow, C. V. (2007). A clinical study of the efferent auditory system in patients with normal hearing who have acute tinnitus. Otol Neurotol., 28(2), pp. 185-190.
Robles, L., Ruggero, M. A., & Rich, N. C. (1997). Two-Tone Distortion on the Basilar Membrane of the Chinchilla. J Neurophysiol., 77(5), pp. 2385-2399.
Robles, L., Ruggero, M. A., & Rich, N. C. (1997). Two-tone distortion on the basilar membrane of the chinchilla cochlea. J Neurophysiol., 77(5), pp. 2385-2399.
Ryu , I. S., Ahn, J. H., Lim, H. W., Joo, K. Y., & Chung, J. W. (2012). Evaluation of masking effects on speech perception in patients with unilateral chronic tinnitus using the hearing in noise test. Otol Neurotol., 33(9), pp. 1472-1476.
Sanchez, T. G., Medeiros, I. R., Levy, C. P., Ramalho, J. R., & Bento, R. F. (2005). Tinnitus in normally hearing patients: clinical aspects and repercussions. Braz J Otorhinolaryngol., 71(4), pp. 427-431.
Schaette, R., & McAlpine, D. (2011). Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. J Neurosci., 31(38), pp. 13452-13457.
Schrott, A., Puel, J. L., & Rebillard, G. (1991). Cochlear origin of 2f1-f2 distortion products assessed by using 2 types of mutant mice. Hear Res., 52(1), pp. 245-253.
Serra , L. S., Granjeiro, R. C., Braga, S. C., Oliveira, C. A., & Sampaio, A. L. (2015). Association between suppression of otoacoustic emissions and annoyance levels in tinnitus patients with normal hearing. Int Tinnitus J., 19(2), pp. 52-58.
Shargorodsky, J., Curhan, G. C., & Farwell, W. R. (2010). Prevalence and characteristics of tinnitus among US adults. Am J Med, 123(8), pp. 711-718.
Siegel, J. H., & Kim, D. O. (1982). Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res., 6(2), pp. 171-182.
Sliwinska-Kowalska, M., & Kotylo, P. (2002). Occupational exposure to noise decreases otoacoustic emission efferent suppression. Int J Audiol., 41(2), pp. 113-119.
SnowB.James. (2004). Tinnitus: Theory and Management. BC Decker.
Stuart, A., & Butler, K. A. (2012). Contralateral suppression of transient otoacoustic emissions and sentence recognition in noise in young adults. J Am Acad Audiol., 23, pp. 686-689.
Sziklai, L., & Dallos, P. (1993, 5). Acetylcholine controls the gain of the voltage-to-movement converter in isolated outer hair cells. Acta Otolaryngol., 113(3), pp. 326-329.
Tyler, R. S., & Babin, R. W. (1986). Tinnitus. (C. W. Cummings, J. M. Fredrickson, L. Harker, & C. J. Krause, Eds.) Otolaryngology Head and Neck Surgery.
Urnaua, D., & Tochetto, M. T. (2012). Occurrence and suppression effect of Otoacoustic Emissions in normal hearing adults with tinnitus and hyperacusis. Braz J Otorhinolaryngol., 78(1), pp. 87-94.
Veuillet, E., Collet, L., & Duclaux, R. (1991). Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects:dependence on stimulus variables. J Neurophysiol., 65(3), pp. 724-735.
Wagner, W., Frey, K., Heppelmann, G., Plontke, S. K., & Zenner, H. P. (2008). Speech-in-noise intelligibility does not correlate with efferent olivocochlear reflex in humans with normal hearing. Acta Otolaryngol., 128(1), pp. 53-60.
Warr, W. B. (1978). The olivocochlear bundle : its origins and terminations in the cat. (R. F. Naunton, & C. Fernandez, Eds.) United States: New York : Academic Press.
Warr, W. B., Guinan, J. J., & White, J. S. (1986). Organization of the efferent fibers: the lateral and medial olivocochlear systems. Neurobiology of hearing: The cochlea, pp. 333-348.
Wiederhold, M., & Kiang, N. (1970). Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am., 48(4), pp. 950-965.
Withnell, R. H. (2001). Brief report: the cochlear microphonic as an indication of outer hair cell function. Ear Hear., 22(1), pp. 75-77.
Yetiser, S., Tosun, F., Satar, B., Arslanhan, M., Akcam, T., & Ozkaptan, Y. (2002). The role of zinc in management of tinnitus. Auris Nasus Larynx., pp. 329-333.
李恆惠, 黃啟原, 吳俊良, & 陳小娟. (2009). 正常聽力耳鳴患者於噪音背景之語音辨識探究。. 台灣聽力語言學會雜誌(23), 頁 21-30.
劉樹玉. (2002). 腦幹聽性誘發電位波間潛時延長之語言發展遲緩兒童其變頻耳聲傳射之對側抑制. 國立台北護理學院聽語障礙科學研究所.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top