跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾志維
研究生(外文):Zeng Chih-Wei
論文名稱:利用斑馬魚模式動物探討經缺氧回復後參與脊髓神經修復的特殊細胞群
論文名稱(外文):Subtypes of Hypoxia-responsive Cells Differentiate into Neurons in Spinal Cord of Zebrafish Embryos after Hypoxic Stress
指導教授:蔡懷楨蔡懷楨引用關係王致恬
口試委員:管永恕鄭邑荃劉薏雯
口試日期:2018-06-19
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:91
中文關鍵詞:神經再生脊髓受損逆境反應斑馬魚
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Following hypoxic stress, neuron stem/progenitor cells (NSPCs) and other uncharacterized cells of zebrafish central nervous system (CNS) thrive during recovery. To characterize the remaining cell population, we employed a zebrafish transgenic line, huORFZ, which harbors an inhibitory upstream open reading frame of human chop (huORFchop) fused with GFP reporter and driven by cytomegalovirus promoter. When huORFZ embryos were treated with hypoxic stress, followed by oxygen recovery, the appearance of GFP indicated that some CNS cells survived and successfully repressed the translational inhibition caused by huORFchop. These GFP-(+) cells, termed hypoxia-responsive recovering cells, or HrRCs, were primarily some NSPCs and reactive radial glia cells (RGs), along with some oligodendrocyte progenitor cells (OLPs) and oligodendrocytes (OLs). By in vitro assay, we demonstrated that these cultured HrRCs were able to differentiate into mature unipolar neurons. By in vivo examination, we found that (1) GFP-(+) HrRCs did not undergo apoptosis, while GFP-(-) neurons did. (2) HrRCs were able to migrate; (3) among HrRCs, only GFP-(+) NSPCs and GFP-(+) RGs proliferated and differentiated into mature functional neurons after oxygen recovery; (4) prolonged recovery time after hypoxic stress correlated with higher proportions of GFP-(+) NSPCs and GFP-(+) RGs that had differentiated into neurons, in contrast to lower proportions of proliferating/differentiating GFP-(-) NSPCs and GFP(-) RGs; (5) the number of NSPCs and RGs differentiating into neurons was low in unstressed embryos, suggesting that embryonic development is not associated with the differentiation of HrRCs into neurons; and (6) specific ablation of 15 HrRCs in the spinal cord of each stress-treated huORFZ embryo severely impaired its swimming performance. Therefore, we demonstrated that type-specific cell populations which respond sensitively to hypoxic stress play an important role during the process of neuronal regeneration of zebrafish spinal cord.
摘要………………………………………………………………………………….. 1
Abstract………………...…..…………….………………………….……………… 2
文獻回顧……...………………….…………………...………………….……….…. 3
脊髓…….…………………...…………….…….……….….……….….……..... 3
脊髓損傷……….…………………...………………….……………………….. 3
斑馬魚神經膠細胞種類的鑑別……….…………………...……………………6
內質網的功能……….…………………...………………….…………………...7
ER stress、ER-associated stress 與缺氧……….…………………...………………... 8
Unfolded protein response (UPR) ……….…………………...……………………… 8
Chop功能……….…………………...………………….……………………….. 11
chop 在逆境下的轉綠與轉譯調控……….…………………...…………………….11
uORFchop 轉譯抑制調控功能相關研究…………...………………………………. 12
uORFchop 轉譯調控路徑的 in vivo 研究平台…………...………………………… 16
Introduction………..……………………………………………….……………… 17
Materials and Methods……………………….…………………….……………... 20
Results…………………………...…………...…………………….………………. 26
Discussion …………………………...……………………………………………... 39
Reference ……………………………...…………………………………………… 42
Table…………………………………………………………………………….….. 48
Figures …………………………...………………………………………..……….. 49
Movie……………………………………………………………………..……….... 66
Curriculum Vitae ………………………………………………………………..…67
Publication …..…………………………………………………………………….. 69
Ara, J. and De Montpellier, S. (2013) Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain. Stem Cell Res. 11, 669-686
Bernardos, R. L. and Raymond, P. A. (2006) GFAP transgenic zebrafish. Gene Expr. Patterns 6, 1007-1013
Bhatheja, K. and Field, J. (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int. J. Biochem. Cell Biol. 38, 1995-1999
Buffo, A., Rite, I., Tripathi, P., Lepier, A., Colak, D., Horn, A. P., Mori, T. and Götz, M. (2008) Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc. Natl. Acad. Sci. USA. 105, 3581-3586
Chapouton, P., Jagasia, R. and Bally-Cuif, L. (2007) Adult neurogenesis in non-mammalian vertebrates. Bioessays 29, 745-757
Chen, Y. H., Tsai, I.T., Wen, C.C., Wang, Y.H., Cheng, C.C., Hu, S.C. and Chen, Y. H. (2012) Fin reduction is a novel and unexpected teratogenic effect of amikacin-treated zebrafish embryos. Toxicol. Mech. Methods 22, 151-158
Dobson, J. T., Da''as, S., McBride, E. R. and Berman, J. N. (2009) Fluorescence-activated cell sorting (FACS) of whole mount in situ hybridization (WISH) labelled haematopoietic cell populations in the zebrafish. Br. J. Haematol. 144, 732-475
Don, B., Zhou, H., Han, C., Yao, J., Xu, L., Zhang, M., Fu, Y. and Xia, Q. (2014) Ischemia/reperfusion-induced CHOP expression promotes apoptosis and impairs renal function recovery: the role of acidosis and GPR4. PLoS One 9, e110944
Endo, M., Oyadomari, S., Suga, M., Mori, M. and Gotoh, T. (2005) The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice. J. Biochem. 138, 501-507
Fausett, B. V. and Goldman, D. (2006) A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J. Neurosci. 26, 6303-6313
García-Verdugo, J. M., Ferrón, S., Flames, N., Collado, L., Desfilis, E. and Font, E. (2002) The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull. 57, 765-775
Guo, J. S., Zeng, Y. S., Li, H. B., Huang, W. L., Liu, R. Y., Li, X. B., Ding, Y., Wu, L. Z. and Cai, D. Z. (2007) Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord 45, 15-24
Halterman, M. W., Gill, M., DeJesus, C., Ogihara, M., Schor, N. F. and Federoff, H. J. (2010) The endoplasmic reticulum stress response factor CHOP-10 protects against hypoxia-induced neuronal death. J. Biol. Chem. 285, 21329-21340
Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell. 5, 897-904
Ho, S. Y., Goh, C. W., Gan, J. Y., Lee, Y. S., Lam, M. K., Hong, N., Hong, Y., Chan, W. K. and Shu-Chien, A. C. (2014) Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 11, 407-420
Horky, L. L., Galimi, F., Gage, F. H. and Horner, P. J. (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J. Comp. Neurol. 498, 525-538
Horner, P. J., Power, A. E., Kempermann, G., Kuhn, H. G., Palmer, T. D., Winkler, J., Thal, L. J. and Gage, F. H. (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218-2228
Hu, M. and Easter, S. S. (1999) Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev. Biol. 207, 309-321
Huang, H. Y., Dai, E. S., Liu, J. T., Tu, C. T., Yang, T. C. and Tsai, H. J. (2009) The embryonic expression patterns and the knockdown phenotypes of zebrafish ADP-ribosylation factor-like 6 interacting protein gene. Dev. Dyn. 238, 232-240
Hui, S. P., Dutta, A. and Ghosh, S. (2010) Cellular response after crush injury in adult zebrafish spinal cord. Dev. Dyn. 239, 2962-2979
Hui, S. P., Nag, T. C. and Ghosh, S. (2015) Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish. PLoS One 10:e0143595
Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U. and Frisén, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25-34
Kamei, Y., Suzuki, M., Watanabe, K., Fujimori, K., Kawasaki, T., Deguchi, T., Yoneda, Y., Todo, T., Takagi, S., Funatsu, T., et al. (2009) Infrared laser-mediated gene induction in targeted single cells in vivo. Nat. Methods 6, 79-81
Kaslin, J., Ganz, J. and Brand, M. (2008) Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 101-122
Kayagaki, N., Warming, S., Lamkanfi, M., Vande-Walle, L., Louie, S., Dong, J., Newton, K., Qu, Y., Liu, J., Heldens, S., et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479, 117-121
Kimura, E., Deguchi, T., Kamei, Y., Shoji, W., Yuba, S. and Hitomi, J. (2013) Application of infrared laser to the zebrafish vascular system: gene induction, tracing, and ablation of single endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 1264-1270
Kishimoto, N., Shimizu, K. and Sawamoto, K. (2012) Neuronal regeneration in a zebrafish model of adult brain injury. Dis. Model Mech. 5, 200-209
Kishimoto, N., Alfaro-Cervello, C., Shimizu, K., Asakawa, K., Urasaki, A., Nonaka, S., Kawakami, K., Garcia-Verdugo, J. M. and Sawamoto, K. (2011) Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish. J. Comp. Neurol. 519, 3549-3565
Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J. and Brand, M. (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138, 4831-4841
Lee, H. C., Chen, Y. J., Liu, Y. W., Lin, K. Y., Chen, S. W., Lin, C. Y., Lu, Y. C., Hsu, P. C., Lee, S. C. and Tsai, H. J. (2011) Transgenic zebrafish model to study translational control mediated by upstream open reading frame of human chop gene. Nucleic Acids Res. 39: e139
Lee, H. C., Tseng, W. A., Lo, F. Y., Liu, T. M. and Tsai, H. J. (2009) FoxD5 mediates anterior-posterior polarity through upstream modulator Fgf signaling during zebrafish somitogenesis. Dev. Biol. 336, 232–245
Lin, C. Y., Chen, W. T., Lee, H. C., Yang, P. H., Yang, H. J. and Tsai, H. J. (2009) The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish. Dev. Biol. 331, 152-66
Lin, C. Y., Lee, H. C., Chen, H. C., Hsieh, C. C. and Tsai, H. J. (2013) Normal function of Myf5 during gastrulation is required for pharyngeal arch cartilage development in zebrafish embryos. Zebrafish 10, 486-499
Matsumoto, M., Minami, M., Takeda, K., Sakao, Y. and Akira, S. (1996) Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett. 395, 143-147
Maytin, E. V, Ubeda, M., Lin, J. C. and Habener, J. F. (2001) Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp. Cell Res. 267, 193-204
McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. and Holbrook, N. J. (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 21, 1249-1259
Nishitoh, H. (2012) CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem. 151, 217-219
Pavlou, S., Astell, K., Kasioulis, I., Gakovic, M., Baldock, R., van, Heyningen, V. and Coutinho, P. (2014) Pleiotropic effects of Sox2 during the development of the zebrafish epithalamus. PLoS One 9:e87546.
Pfeiffer, S. E., Warrington, A. E. and Bansal, R. (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191-197
Reimer, M. M., Sörensen, I., Kuscha, V., Frank, R. E., Liu, C., Becker, C. G. and Becker T. (2008) Motor neuron regeneration in adult zebrafish. J. Neurosci. 28, 8510-8516.
Ron, D. and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529
Senut, M. C., Azher, S., Margolis, F. L., Patel, K., Mousa, A., Majid, A. (2009) Distribution of carnosine-like peptides in the nervous system of developing and adult zebrafish (Danio rerio) and embryonic effects of chronic carnosine exposure. Cell Tissue Res. 337, 45-61.
Shirakawa, K., Maeda, S., Gotoh, T., Hayashi, M., Shinomiya, K., Ehata, S., Nishimura, R., Mori, M., Onozaki, K., Hayashi, H., et al. (2006) CCAAT/enhancer-binding protein homologous protein (CHOP) regulates osteoblast differentiation. Mol. Cell Biol. 26, 6105-6116
Yamamoto, S., Yamamoto, N., Kitamura, T., Nakamura, K. and Nakafuku, M. (2001) Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp. Neurol. 172, 115-127
Zhou, A. X., Wang, X., Lin, C. S., Han, J., Yong, J., Nadolski, M. J., Borén, J., Kaufman, R. J., Tabas, I. (2015) C/EBP-Homologous Protein (CHOP) in Vascular Smooth Muscle Cells Regulates Their Proliferation in Aortic Explants and Atherosclerotic Lesions. Circ. Res. 116, 1736-1743
Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L. and Ron, D. (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982-995
Zupanc, G. K. (2001) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav. Evol. 58, 250-275
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top