|
Ara, J. and De Montpellier, S. (2013) Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain. Stem Cell Res. 11, 669-686 Bernardos, R. L. and Raymond, P. A. (2006) GFAP transgenic zebrafish. Gene Expr. Patterns 6, 1007-1013 Bhatheja, K. and Field, J. (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int. J. Biochem. Cell Biol. 38, 1995-1999 Buffo, A., Rite, I., Tripathi, P., Lepier, A., Colak, D., Horn, A. P., Mori, T. and Götz, M. (2008) Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc. Natl. Acad. Sci. USA. 105, 3581-3586 Chapouton, P., Jagasia, R. and Bally-Cuif, L. (2007) Adult neurogenesis in non-mammalian vertebrates. Bioessays 29, 745-757 Chen, Y. H., Tsai, I.T., Wen, C.C., Wang, Y.H., Cheng, C.C., Hu, S.C. and Chen, Y. H. (2012) Fin reduction is a novel and unexpected teratogenic effect of amikacin-treated zebrafish embryos. Toxicol. Mech. Methods 22, 151-158 Dobson, J. T., Da''as, S., McBride, E. R. and Berman, J. N. (2009) Fluorescence-activated cell sorting (FACS) of whole mount in situ hybridization (WISH) labelled haematopoietic cell populations in the zebrafish. Br. J. Haematol. 144, 732-475 Don, B., Zhou, H., Han, C., Yao, J., Xu, L., Zhang, M., Fu, Y. and Xia, Q. (2014) Ischemia/reperfusion-induced CHOP expression promotes apoptosis and impairs renal function recovery: the role of acidosis and GPR4. PLoS One 9, e110944 Endo, M., Oyadomari, S., Suga, M., Mori, M. and Gotoh, T. (2005) The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice. J. Biochem. 138, 501-507 Fausett, B. V. and Goldman, D. (2006) A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J. Neurosci. 26, 6303-6313 García-Verdugo, J. M., Ferrón, S., Flames, N., Collado, L., Desfilis, E. and Font, E. (2002) The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull. 57, 765-775 Guo, J. S., Zeng, Y. S., Li, H. B., Huang, W. L., Liu, R. Y., Li, X. B., Ding, Y., Wu, L. Z. and Cai, D. Z. (2007) Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord 45, 15-24 Halterman, M. W., Gill, M., DeJesus, C., Ogihara, M., Schor, N. F. and Federoff, H. J. (2010) The endoplasmic reticulum stress response factor CHOP-10 protects against hypoxia-induced neuronal death. J. Biol. Chem. 285, 21329-21340 Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell. 5, 897-904 Ho, S. Y., Goh, C. W., Gan, J. Y., Lee, Y. S., Lam, M. K., Hong, N., Hong, Y., Chan, W. K. and Shu-Chien, A. C. (2014) Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 11, 407-420 Horky, L. L., Galimi, F., Gage, F. H. and Horner, P. J. (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J. Comp. Neurol. 498, 525-538 Horner, P. J., Power, A. E., Kempermann, G., Kuhn, H. G., Palmer, T. D., Winkler, J., Thal, L. J. and Gage, F. H. (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218-2228 Hu, M. and Easter, S. S. (1999) Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev. Biol. 207, 309-321 Huang, H. Y., Dai, E. S., Liu, J. T., Tu, C. T., Yang, T. C. and Tsai, H. J. (2009) The embryonic expression patterns and the knockdown phenotypes of zebrafish ADP-ribosylation factor-like 6 interacting protein gene. Dev. Dyn. 238, 232-240 Hui, S. P., Dutta, A. and Ghosh, S. (2010) Cellular response after crush injury in adult zebrafish spinal cord. Dev. Dyn. 239, 2962-2979 Hui, S. P., Nag, T. C. and Ghosh, S. (2015) Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish. PLoS One 10:e0143595 Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U. and Frisén, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25-34 Kamei, Y., Suzuki, M., Watanabe, K., Fujimori, K., Kawasaki, T., Deguchi, T., Yoneda, Y., Todo, T., Takagi, S., Funatsu, T., et al. (2009) Infrared laser-mediated gene induction in targeted single cells in vivo. Nat. Methods 6, 79-81 Kaslin, J., Ganz, J. and Brand, M. (2008) Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 101-122 Kayagaki, N., Warming, S., Lamkanfi, M., Vande-Walle, L., Louie, S., Dong, J., Newton, K., Qu, Y., Liu, J., Heldens, S., et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479, 117-121 Kimura, E., Deguchi, T., Kamei, Y., Shoji, W., Yuba, S. and Hitomi, J. (2013) Application of infrared laser to the zebrafish vascular system: gene induction, tracing, and ablation of single endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 1264-1270 Kishimoto, N., Shimizu, K. and Sawamoto, K. (2012) Neuronal regeneration in a zebrafish model of adult brain injury. Dis. Model Mech. 5, 200-209 Kishimoto, N., Alfaro-Cervello, C., Shimizu, K., Asakawa, K., Urasaki, A., Nonaka, S., Kawakami, K., Garcia-Verdugo, J. M. and Sawamoto, K. (2011) Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish. J. Comp. Neurol. 519, 3549-3565 Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J. and Brand, M. (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138, 4831-4841 Lee, H. C., Chen, Y. J., Liu, Y. W., Lin, K. Y., Chen, S. W., Lin, C. Y., Lu, Y. C., Hsu, P. C., Lee, S. C. and Tsai, H. J. (2011) Transgenic zebrafish model to study translational control mediated by upstream open reading frame of human chop gene. Nucleic Acids Res. 39: e139 Lee, H. C., Tseng, W. A., Lo, F. Y., Liu, T. M. and Tsai, H. J. (2009) FoxD5 mediates anterior-posterior polarity through upstream modulator Fgf signaling during zebrafish somitogenesis. Dev. Biol. 336, 232–245 Lin, C. Y., Chen, W. T., Lee, H. C., Yang, P. H., Yang, H. J. and Tsai, H. J. (2009) The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish. Dev. Biol. 331, 152-66 Lin, C. Y., Lee, H. C., Chen, H. C., Hsieh, C. C. and Tsai, H. J. (2013) Normal function of Myf5 during gastrulation is required for pharyngeal arch cartilage development in zebrafish embryos. Zebrafish 10, 486-499 Matsumoto, M., Minami, M., Takeda, K., Sakao, Y. and Akira, S. (1996) Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett. 395, 143-147 Maytin, E. V, Ubeda, M., Lin, J. C. and Habener, J. F. (2001) Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp. Cell Res. 267, 193-204 McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. and Holbrook, N. J. (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 21, 1249-1259 Nishitoh, H. (2012) CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem. 151, 217-219 Pavlou, S., Astell, K., Kasioulis, I., Gakovic, M., Baldock, R., van, Heyningen, V. and Coutinho, P. (2014) Pleiotropic effects of Sox2 during the development of the zebrafish epithalamus. PLoS One 9:e87546. Pfeiffer, S. E., Warrington, A. E. and Bansal, R. (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191-197 Reimer, M. M., Sörensen, I., Kuscha, V., Frank, R. E., Liu, C., Becker, C. G. and Becker T. (2008) Motor neuron regeneration in adult zebrafish. J. Neurosci. 28, 8510-8516. Ron, D. and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529 Senut, M. C., Azher, S., Margolis, F. L., Patel, K., Mousa, A., Majid, A. (2009) Distribution of carnosine-like peptides in the nervous system of developing and adult zebrafish (Danio rerio) and embryonic effects of chronic carnosine exposure. Cell Tissue Res. 337, 45-61. Shirakawa, K., Maeda, S., Gotoh, T., Hayashi, M., Shinomiya, K., Ehata, S., Nishimura, R., Mori, M., Onozaki, K., Hayashi, H., et al. (2006) CCAAT/enhancer-binding protein homologous protein (CHOP) regulates osteoblast differentiation. Mol. Cell Biol. 26, 6105-6116 Yamamoto, S., Yamamoto, N., Kitamura, T., Nakamura, K. and Nakafuku, M. (2001) Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp. Neurol. 172, 115-127 Zhou, A. X., Wang, X., Lin, C. S., Han, J., Yong, J., Nadolski, M. J., Borén, J., Kaufman, R. J., Tabas, I. (2015) C/EBP-Homologous Protein (CHOP) in Vascular Smooth Muscle Cells Regulates Their Proliferation in Aortic Explants and Atherosclerotic Lesions. Circ. Res. 116, 1736-1743 Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L. and Ron, D. (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982-995 Zupanc, G. K. (2001) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav. Evol. 58, 250-275
|