|
1Zhuravleva, J. et al. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol 143, 378-382, doi:10.1111/j.1365-2141.2008.07362.x (2008). 2de Jong, J. L. O. & Zon, L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39, 481-501, doi:10.1146/annurev.genet.39.073003.095931 (2005). 3Rasighaemi, P., Basheer, F., Liongue, C. & Ward, A. C. Zebrafish as a model for leukemia and other hematopoietic disorders. J Hematol Oncol 8, 29, doi:10.1186/s13045-015-0126-4 (2015). 4Paik, E. J. & Zon, L. I. Hematopoietic development in the zebrafish. Int J Dev Biol 54, 1127-1137, doi:10.1387/ijdb.093042ep (2010). 5Bennett, C. M. et al. Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643-651 (2001). 6Davidson, A. J. et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425, 300-306, doi:10.1038/nature01973 (2003). 7Chen, A. T. & Zon, L. I. Zebrafish blood stem cells. J Cell Biochem 108, 35-42, doi:10.1002/jcb.22251 (2009). 8Tian, Y. et al. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells. J Exp Med 214, 3347-3360, doi:10.1084/jem.20170488 (2017). 9Zhang, C. Y. et al. Transforming growth factor-beta1 regulates the nascent hematopoietic stem cell niche by promoting gluconeogenesis. Leukemia, doi:10.1038/leu.2017.198 (2017). 10Lu, J. W. et al. Zebrafish as a Model for the Study of Human Myeloid Malignancies. Biomed Res Int 2015, 641475, doi:10.1155/2015/641475 (2015). 11Dooley, K. A., Davidson, A. J. & Zon, L. I. Zebrafish scl functions independently in hematopoietic and endothelial development. Dev Biol 277, 522-536, doi:10.1016/j.ydbio.2004.09.004 (2005). 12Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238, 274-288, doi:10.1006/dbio.2001.0393 (2001). 13Liongue, C., Hall, C. J., O''Connell, B. A., Crosier, P. & Ward, A. C. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration. Blood 113, 2535-2546, doi:10.1182/blood-2008-07-171967 (2009). 14Lieschke, G. J., Oates, A. C., Crowhurst, M. O., Ward, A. C. & Layton, J. E. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087-3096 (2001). 15Pimtong, W., Datta, M., Ulrich, A. M. & Rhodes, J. Drl.3 governs primitive hematopoiesis in zebrafish. Sci Rep 4, 5791, doi:10.1038/srep05791 (2014). 16Banki, K., Halladay, D. & Perl, A. Cloning and Expression of the Human Gene for Transaldolase - a Novel Highly Repetitive Element Constitutes an Integral-Part of the Coding Sequence. J Biol Chem 269, 2847-2851 (1994). 17Samland, A. K. & Sprenger, G. A. Transaldolase: from biochemistry to human disease. Int J Biochem Cell Biol 41, 1482-1494, doi:10.1016/j.biocel.2009.02.001 (2009). 18Moriyama, T. et al. Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network. Sci Rep 6, 34648, doi:10.1038/srep34648 (2016). 19Thorell, S., Gregerly, P., Banki, K., Perl, A. & Schneider, G. The three-dimensional structure of human transaldolase. Febs Lett 475, 205-208, doi:Doi 10.1016/S0014-5793(00)01658-6 (2000). 20Cabezas, H., Raposo, R. R. & Melendez-Hevia, E. Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol Cell Biochem 201, 57-63 (1999). 21Nakahigashi, K. et al. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 5, doi:ARTN 306 10.1038/msb.2009.65 (2009). 22张锐. 转醛醇酶活性在人肝癌组织中特异性变化的研究, 南京医科大学, (2005). 23Banki, K., Hutter, E., Colombo, E., Gonchoroff, N. J. & Perl, A. Glutathione levels and sensitivity to apoptosis are regulated by changes in transaldolase expression. J Biol Chem 271, 32994-33001, doi:DOI 10.1074/jbc.271.51.32994 (1996). 24Banki, K. & Perl, A. Inhibition of the catalytic activity of human transaldolase by antibodies and site-directed mutagenesis. Febs Lett 378, 161-165, doi:Doi 10.1016/0014-5793(95)01446-2 (1996). 25Verhoeven, N. M. et al. Transaldolase deficiency: Liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet 68, 1086-1092, doi:Doi 10.1086/320108 (2001). 26Al-Shamsi, A. M., Ben-Salem, S., Hertecant, J. & Al-Jasmi, F. Transaldolase deficiency caused by the homozygous p.R192C mutation of the TALDO1 gene in four Emirati patients with considerable phenotypic variability. Eur J Pediatr 174, 661-668, doi:10.1007/s00431-014-2449-5 (2015). 27Qian, Y. et al. Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing. Biochem J 415, 123-134, doi:10.1042/BJ20080722 (2008). 28陳建源. 成人急性骨髓性白血病的臨床特徵和基因變異. 臺灣大學臨床醫學研究所學位論文, 1-162 (2013). 29Ng, C. K. et al. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol 16, 107, doi:10.1186/s13059-015-0657-6 (2015). 30Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9, 33-46, doi:10.1038/nrm2310 (2008). 31Chuang, T. P. et al. Over-expression of AURKA, SKA3 and DSN1 contributes to colorectal adenoma to carcinoma progression. Oncotarget 7, 45803-45818, doi:10.18632/oncotarget.9960 (2016). 32Villefranc, J. A., Amigo, J. & Lawson, N. D. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236, 3077-3087, doi:10.1002/dvdy.21354 (2007). 33Hsu, K. et al. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104, 1291-1297, doi:10.1182/blood-2003-09-3105 (2004). 34Dohner, H., Weisdorf, D. J. & Bloomfield, C. D. Acute Myeloid Leukemia. N Engl J Med 373, 1136-1152, doi:10.1056/NEJMra1406184 (2015). 35Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391-2405, doi:10.1182/blood-2016-03-643544 (2016). 36Ward, A. C. et al. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 102, 3238-3240, doi:10.1182/blood-2003-03-0966 (2003). 37Lu, J. W. et al. Overexpression of SOX4 correlates with poor prognosis of acute myeloid leukemia and is leukemogenic in zebrafish. Blood Cancer J 7, e593, doi:10.1038/bcj.2017.74 (2017). 38Glenn, N. O. et al. Distinct regulation of the anterior and posterior myeloperoxidase expression by Etv2 and Gata1 during primitive Granulopoiesis in zebrafish. Dev Biol 393, 149-159, doi:10.1016/j.ydbio.2014.06.011 (2014). 39Belele, C. L. et al. Differential requirement for Gata1 DNA binding and transactivation between primitive and definitive stages of hematopoiesis in zebrafish. Blood 114, 5162-5172, doi:10.1182/blood-2009-05-224709 (2009). 40Galloway, J. L., Wingert, R. A., Thisse, C., Thisse, B. & Zon, L. I. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 8, 109-116, doi:10.1016/j.devcel.2004.12.001 (2005). 41Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 269, 1-20, doi:10.1016/j.aquaculture.2007.04.077 (2007). 42Liu, W. et al. c-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish. Leukemia 31, 222-233, doi:10.1038/leu.2016.170 (2017). 43Forrester, A. M. et al. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br J Haematol 155, 167-181, doi:10.1111/j.1365-2141.2011.08810.x (2011). 44Dore, L. C. et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 105, 3333-3338, doi:10.1073/pnas.0712312105 (2008).
|