跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃焱
研究生(外文):Yan Huang
論文名稱:TALDO1-DSN1轉基因斑馬魚之血液系統的病變現象及分析
論文名稱(外文):TALDO1-DSN1 fusion gene regulates the progression of hematopoietic disorders in transgenic zebrafish
指導教授:林亮音
口試委員:歐大諒胡忠怡陳建源郭靜穎
口試日期:2018-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:TALDO1-DSN1spi1啟動子轉基因斑馬魚造血作用惡性骨髓性白血病
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,斑馬魚成為研究人類白血病及其他血液疾病的重要模式生物。斑馬魚的優勢在於:繁殖週期短,產生後代數量多;胚胎透明,且體外發育,易於觀察;易於飼養,生長迅速。且斑馬魚造血作用與人類及哺乳動物相似,有兩個造血高峰期。斑馬魚造血遺傳體系與人類的在演化上具有高度保守性,多種人類重要的造血調控轉錄因子,斑馬魚都有其同源類似物。
在之前的對急性骨髓性白血病的病人檢體進行研究時,發現7個病人出現相同的TALDO1-DSN1融合基因。人類TALDO1是轉醛醇酶的編碼蛋白,轉醛醇酶對磷酸戊糖途徑有至關重要的調節作用。而在過往研究中,TALDO1的異常與一系列不同的自體免疫疾病和惡性腫瘤有重要相關。人類DSN1編碼了動粒蛋白,在細胞分裂中起重要作用。在乳癌和結腸直腸癌研究中,DSN1與癌症的發生和轉移有關。
本研究欲通過用spi1啟動子引導的髓系特定表達TALDO1-DSN1融合基因的斑馬魚Tg(pTolCG-spi1:TALDO1-DSN1-PA/CG),觀察其生命週期中,造血系統是否出現異常,以確認該融合基因在造血作用中扮演的角色。
我們篩選出穩定遺傳目的基因的轉基因斑馬魚進行研究。對於發育5天以內的幼魚,用qRT-PCR檢測造血作用中特定轉錄因子的表達情況。結果發現多個基因表達異常,其中,以gata1的增多、mpo的減少最為顯著。因此,我們採用整體原位雜交技術,進行雙重確認。
對6至12個月的成魚,取其周邊血及腎髓製作血液抹片進行細胞分型及計數。發現在成魚中,有部分轉基因斑馬魚的周邊血中出現未成熟白血球,伴隨腎髓中的芽細胞異常增多,而成熟白血球減少的現象。
In acute myeloid leukemia(AML),a hematologic malignancy, there is an urgent need for molecular understanding as well as targeted therapy. Recently, zebrafish has become an important model organism for the study of AML and other blood diseases, due to many advantages of zebrafish, such as short reproductive cycle, a large number of offspring, transparently and observable embryos, easy to breed and grow rapidly. Like higher vertebrates, zebrafish have two major waves of hematopoiesis, the primitive and definitive waves. The hematopoietic genetic system of zebrafish is highly conserved with humans in evolution. Various important human hematopoietic regulatory transcription factors are conservative.

In previous studies, seven patients, who suffer from acute myeloid leukemia (AML), had the same TALDO1-DSN1 fusion gene. Human TALDO1 encodes an enzyme, transaldolase, which is a crucial regulator in pentose phosphate pathway. In previous studies, the abnormality of TALDO1 was associated with the development of different autoimmune diseases and malignancies. Human DSN1 encodes kinetochore proteins which plays an irreplaceable role in cell division. In breast cancer and colorectal cancer, DSN1 is related to the occurrence and metastasis of cancer.

In this study, we use the transgenic zebrafish line, Tg (pTolCG-spi1: TALDO1-DSN1-PA/CG), to display that the human TALDO1-DSN1 fusion gene driven by spi1 (a myeloid-specific promoter) can lead to abnormal hematopoiesis during its life cycle.

We screened transgenic zebrafish for genetically stable transgenes. For the embryo less than 5 days-post-fertilization (dpf), we detected the expression of specific transcription factors in hematopoiesis by qRT-PCR. The result demonstrated that various genes expressed abnormal. Interestingly, gata1, the erythropoiesis transcription factor, surged at several points in time, as well as the granulocyte marker mpo reduced significantly, and subsequently, we use the whole-mount in situ hybridization technique for double confirmation.

For adult fishes aged from 6 to 12 months, peripheral blood and kidney marrow were taken, and followed by made for blood smears. We taken the blood morphological examination by cell typing and counting. The results displayed that in some transgenic adult zebrafish, immature myelo/monocytes appeared in the peripheral blood. In kidney marrow, the percentage of blast cells and myelo/monocytes increased abnormally.
致謝 I
目 錄 II
圖目錄 V
表目錄 VI
縮寫表 VII
摘要 VIII
Abstract IX
第一章 前言 1
1.1 模式生物—斑馬魚 1
1.2 斑馬魚的造血系統(附圖一) 1
1.3 斑馬魚的造血調控因子 2
1.4 蛋白編碼基因TALDO1 4
1.4.1 TALDO1之簡介 4
1.4.2 轉醛醇酶之功能 4
1.4.3 TALDO1突變導致之病症(附表一) 5
1.4.4 TALDO1與癌症關聯性之研究 5
1.5 蛋白編碼基因DSN1(附圖二) 6
1.6 TALDO1-DSN1融合基因 7
第二章 研究目的 8
第三章 材料與方法 9
3.1 材料 9
3.1.1 斑馬魚 9
3.1.2 儀器設備 9
3.1.3 藥品 10
3.1.4 抗體 11
3.1.5 酵素與試劑 12
3.1.6 生物試劑組 12
3.1.7 藥品與試劑配置 12
3.2 方法 13
3.2.1 斑馬魚飼育 13
3.2.2 基因分型(Genotyping) 14
3.2.3 基因表達量分析 15
3.2.4 原位雜交技術(Whole-mount in situ hybridization, WISH) 18
3.2.5 血球與組織分析 20
3.2.6 影像處理 21
3.2.7 統計方法 21
第四章 實驗結果 22
4.1 TALDO1-DSN1轉基因斑馬魚的篩選與觀察 22
4.2 融合基因對造血相關轉錄因子的影響 22
4.2.1 原始造血轉錄因子的異常表達 22
4.2.2 永久造血轉錄因子的異常表達 23
4.3 成魚血球染色分析 24
4.3.1 6月齡成魚的血球分析 24
4.3.2 12月齡成魚的血球分析 25
第五章 討論 26
第六章 參考文獻 30
表 35
圖 39
附圖 61
附表 62
1Zhuravleva, J. et al. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol 143, 378-382, doi:10.1111/j.1365-2141.2008.07362.x (2008).
2de Jong, J. L. O. & Zon, L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39, 481-501, doi:10.1146/annurev.genet.39.073003.095931 (2005).
3Rasighaemi, P., Basheer, F., Liongue, C. & Ward, A. C. Zebrafish as a model for leukemia and other hematopoietic disorders. J Hematol Oncol 8, 29, doi:10.1186/s13045-015-0126-4 (2015).
4Paik, E. J. & Zon, L. I. Hematopoietic development in the zebrafish. Int J Dev Biol 54, 1127-1137, doi:10.1387/ijdb.093042ep (2010).
5Bennett, C. M. et al. Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643-651 (2001).
6Davidson, A. J. et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425, 300-306, doi:10.1038/nature01973 (2003).
7Chen, A. T. & Zon, L. I. Zebrafish blood stem cells. J Cell Biochem 108, 35-42, doi:10.1002/jcb.22251 (2009).
8Tian, Y. et al. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells. J Exp Med 214, 3347-3360, doi:10.1084/jem.20170488 (2017).
9Zhang, C. Y. et al. Transforming growth factor-beta1 regulates the nascent hematopoietic stem cell niche by promoting gluconeogenesis. Leukemia, doi:10.1038/leu.2017.198 (2017).
10Lu, J. W. et al. Zebrafish as a Model for the Study of Human Myeloid Malignancies. Biomed Res Int 2015, 641475, doi:10.1155/2015/641475 (2015).
11Dooley, K. A., Davidson, A. J. & Zon, L. I. Zebrafish scl functions independently in hematopoietic and endothelial development. Dev Biol 277, 522-536, doi:10.1016/j.ydbio.2004.09.004 (2005).
12Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238, 274-288, doi:10.1006/dbio.2001.0393 (2001).
13Liongue, C., Hall, C. J., O''Connell, B. A., Crosier, P. & Ward, A. C. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration. Blood 113, 2535-2546, doi:10.1182/blood-2008-07-171967 (2009).
14Lieschke, G. J., Oates, A. C., Crowhurst, M. O., Ward, A. C. & Layton, J. E. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087-3096 (2001).
15Pimtong, W., Datta, M., Ulrich, A. M. & Rhodes, J. Drl.3 governs primitive hematopoiesis in zebrafish. Sci Rep 4, 5791, doi:10.1038/srep05791 (2014).
16Banki, K., Halladay, D. & Perl, A. Cloning and Expression of the Human Gene for Transaldolase - a Novel Highly Repetitive Element Constitutes an Integral-Part of the Coding Sequence. J Biol Chem 269, 2847-2851 (1994).
17Samland, A. K. & Sprenger, G. A. Transaldolase: from biochemistry to human disease. Int J Biochem Cell Biol 41, 1482-1494, doi:10.1016/j.biocel.2009.02.001 (2009).
18Moriyama, T. et al. Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network. Sci Rep 6, 34648, doi:10.1038/srep34648 (2016).
19Thorell, S., Gregerly, P., Banki, K., Perl, A. & Schneider, G. The three-dimensional structure of human transaldolase. Febs Lett 475, 205-208, doi:Doi 10.1016/S0014-5793(00)01658-6 (2000).
20Cabezas, H., Raposo, R. R. & Melendez-Hevia, E. Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol Cell Biochem 201, 57-63 (1999).
21Nakahigashi, K. et al. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 5, doi:ARTN 306 10.1038/msb.2009.65 (2009).
22张锐. 转醛醇酶活性在人肝癌组织中特异性变化的研究, 南京医科大学, (2005).
23Banki, K., Hutter, E., Colombo, E., Gonchoroff, N. J. & Perl, A. Glutathione levels and sensitivity to apoptosis are regulated by changes in transaldolase expression. J Biol Chem 271, 32994-33001, doi:DOI 10.1074/jbc.271.51.32994 (1996).
24Banki, K. & Perl, A. Inhibition of the catalytic activity of human transaldolase by antibodies and site-directed mutagenesis. Febs Lett 378, 161-165, doi:Doi 10.1016/0014-5793(95)01446-2 (1996).
25Verhoeven, N. M. et al. Transaldolase deficiency: Liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet 68, 1086-1092, doi:Doi 10.1086/320108 (2001).
26Al-Shamsi, A. M., Ben-Salem, S., Hertecant, J. & Al-Jasmi, F. Transaldolase deficiency caused by the homozygous p.R192C mutation of the TALDO1 gene in four Emirati patients with considerable phenotypic variability. Eur J Pediatr 174, 661-668, doi:10.1007/s00431-014-2449-5 (2015).
27Qian, Y. et al. Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing. Biochem J 415, 123-134, doi:10.1042/BJ20080722 (2008).
28陳建源. 成人急性骨髓性白血病的臨床特徵和基因變異. 臺灣大學臨床醫學研究所學位論文, 1-162 (2013).
29Ng, C. K. et al. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol 16, 107, doi:10.1186/s13059-015-0657-6 (2015).
30Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9, 33-46, doi:10.1038/nrm2310 (2008).
31Chuang, T. P. et al. Over-expression of AURKA, SKA3 and DSN1 contributes to colorectal adenoma to carcinoma progression. Oncotarget 7, 45803-45818, doi:10.18632/oncotarget.9960 (2016).
32Villefranc, J. A., Amigo, J. & Lawson, N. D. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236, 3077-3087, doi:10.1002/dvdy.21354 (2007).
33Hsu, K. et al. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104, 1291-1297, doi:10.1182/blood-2003-09-3105 (2004).
34Dohner, H., Weisdorf, D. J. & Bloomfield, C. D. Acute Myeloid Leukemia. N Engl J Med 373, 1136-1152, doi:10.1056/NEJMra1406184 (2015).
35Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391-2405, doi:10.1182/blood-2016-03-643544 (2016).
36Ward, A. C. et al. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 102, 3238-3240, doi:10.1182/blood-2003-03-0966 (2003).
37Lu, J. W. et al. Overexpression of SOX4 correlates with poor prognosis of acute myeloid leukemia and is leukemogenic in zebrafish. Blood Cancer J 7, e593, doi:10.1038/bcj.2017.74 (2017).
38Glenn, N. O. et al. Distinct regulation of the anterior and posterior myeloperoxidase expression by Etv2 and Gata1 during primitive Granulopoiesis in zebrafish. Dev Biol 393, 149-159, doi:10.1016/j.ydbio.2014.06.011 (2014).
39Belele, C. L. et al. Differential requirement for Gata1 DNA binding and transactivation between primitive and definitive stages of hematopoiesis in zebrafish. Blood 114, 5162-5172, doi:10.1182/blood-2009-05-224709 (2009).
40Galloway, J. L., Wingert, R. A., Thisse, C., Thisse, B. & Zon, L. I. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 8, 109-116, doi:10.1016/j.devcel.2004.12.001 (2005).
41Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 269, 1-20, doi:10.1016/j.aquaculture.2007.04.077 (2007).
42Liu, W. et al. c-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish. Leukemia 31, 222-233, doi:10.1038/leu.2016.170 (2017).
43Forrester, A. M. et al. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br J Haematol 155, 167-181, doi:10.1111/j.1365-2141.2011.08810.x (2011).
44Dore, L. C. et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 105, 3333-3338, doi:10.1073/pnas.0712312105 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top