|
Bank for International Settlements. (2016). Triennial Central Bank Survey - Foreign exchange turnover in April 2016. Retrieved July 10, 2018, from Bank for International Settlements: https://www.bis.org/publ/rpfx16fx.pdf Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer. Björklund, S., & Uhlin, T. (2017). Artificial Neural Networks for Financial Time Series Prediction and Portfolio Optimization. Master of Science Thesis in Industrial Engineering and Management, Department of Management and Engineering, Linköping University. Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple Technical Trading Rules and the Stochastic Properties of Stock Returns. Journal of Finance, 47(5), pp. 1731-1764. doi:10.2307/2328994 Castellano, G., Fanelli, A. M., & Pelillo, M. (1997). An Iterative Pruning Algorithm for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 8(3), pp. 519-531. doi:10.1109/72.572092 Dunis, C. L., & Huang, X. (2002). Forecasting and Trading Currency Volatility: An Application of Recurrent Neural Regression and Model Combination. Journal of Forecasting, 21(5), pp. 317-354. doi:10.1002/for.833 Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), pp. 179-211. doi:10.1016/0364-0213(90)90002-E European Central Bank. (2018). Statistical Data Warehouse - Reference rates. Retrieved June 30, 2018, from European Central Bank: http://sdw.ecb.europa.eu/browse.do?node=9691296 Fama, E. F. (1965). Random Walks in Stock Market Prices . Financial Analysts Journal, 21(5), pp. 55-59. doi:10.2469/faj.v21.n5.55 Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), pp. 383-417. doi:10.2307/2325486 Ghazali, R. (2007). Higher Order Neural Networks for Financial Time Series Prediction. Doctor of Philosophy Thesis in Computer Science, School of Computing & Mathematical Sciences, Liverpool John Moores University. doi:10.24377/LJMU.t.00005879 Harrald, P. G., & Kamstra, M. (1997). Evolving Artificial Neural Networks to Combine Financial Forecasts. IEEE Transactions on Evolutionary Computation, 1(1), pp. 40-52. doi:10.1109/4235.585891 Hsu, P.-H., & Kuan, C.-M. (2005). Re-Examining the Profitability of Technical Analysis with White’s Reality Check and Hansen’s Spa Test. Journal of Financial Econometrics, 3(4). doi:10.2139/ssrn.685361 Hull, J. C. (2015). Risk Management and Financial Institutions. New Jersey: John Wiley & Sons. Ince, H., & Trafalis, T. B. (2006). A Hybrid Model for Exchange Rate Prediction. Decision Support Systems, 42(2), pp. 1054-1062. doi:10.1016/j.dss.2005.09.001 Jensen, M. C., & Benington, G. A. (1970). Random Walks and Technical Theories: Some Additional Evidence. Journal of Finance, 25(2), pp. 469-482. doi:10.1111/j.1540-6261.1970.tb00671.x Kaastra, I., & Boyd, M. (1996). Designing a Neural Network for Forecasting Financial and Economic Time Series. Neurocomputing, 10(3), pp. 215-236. doi:10.1016/0925-2312(95)00039-9 Ling, S. S., Leung, F. H., Lam, H.-K., Lee, Y.-S., & Tam, P. K. (2003). A Novel Genetic-Algorithm-Based Neural Network for Short-Term Load Forecasting. IEEE Transactions on Industrial Electronics, 50(4), pp. 793-799. doi:10.1109/TIE.2003.814869 Lo, A. W. (2004). The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective. Journal of Portfolio Management, 30(5), pp. 15-29. doi:10.3905/jpm.2004.442611 Malkiel, B. G. (2005). Reflections on the Efficient Market Hypothesis: 30 Years Later. The Financial Review, 40(1), pp. 1-9. doi:10.1111/j.0732-8516.2005.00090.x Murphy, J. J. (1999). Technical Analysis of the Financial Markets: A Comprehensive Guide To Trading Methods And Applications. New York: New York Institute of Finance. Park, C. H., & Irwin, S. H. (2007). What Do We Know About the Profitability of Technical Analysis? Journal of Economic Surveys, 21(4), pp. 786-826. doi:10.1111/j.1467-6419.2007.00519.x Prechelt, L. (2012). Early Stopping - But When? In G. Montavon, G. B. Orr, & K.-R. Müller, Neural Networks: Tricks of the Trade. Berlin: Springer. Record, N. (2003). Currency Overlay. West Sussex: John Wiley & Sons. Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Essex: Pearson. Saunders, M., Thornhill, A., & Lewis, P. (2009). Research Methods for Business Students. New York: Prentice Hall. Sermpinis, G., Laws, J., Karathanasopoulos, A., & Dunis, C. (2012). Forecasting and Trading the EUR/USD Exchange Rate with Gene Expression and Psi Sigma Neural Networks. Expert Systems with Applications, 39(10), pp. 8865-8877. doi:10.1016/j.eswa.2012.02.022 Sermpinis, G., Stasinakis, C., & Dunis, C. (2014). Stochastic and Genetic Neural Network Combinations in Trading and Hybrid Time-Varying Leverage Effects. Journal of International Financial Markets, Institutions & Money, 30, pp. 21-54. doi:10.1016/j.intfin.2014.01.006 Sermpinis, G., Theofilatos, K., Karathanasopoulos, A., Georgopoulos, E. F., & Dunis, C. (2013). Forecasting Foreign Exchange Rates with Adaptive Neural Networks using Radial-Basis Functions and Particle Swarm Optimization. European Journal of Operational Research, 225(3), pp. 528-540. doi:10.1016/j.ejor.2012.10.020 Shin, Y., & Ghosh, J. (1991). The Pi-Sigma Network: An Efficient Higher-Order Neural Network for Pattern Classification and Function Approximation. Seattle International Joint Conference on Neural Networks. doi:10.1109/IJCNN.1991.155142 Tenti, P. (1996). Forecasting Foreign Exchange Rates using Recurrent Neural Networks. Applied Artificial Intelligence, 10(6), pp. 567-582. doi:10.1080/088395196118434 Vecci, L., Piazza, F., & Uncini, A. (1998). Learning and Approximation Capabilities of Adaptive Spline Activation Function Neural Networks. Neural Networks, 11(2), pp. 259-270. doi:10.1016/S0893-6080(97)00118-4 Zhang, G., Hu, M. Y., Patuwo, E., & Indro, D. C. (1999). Artificial Neural Networks in Bankruptcy Prediction: General Framework and Cross-Validation Analysis. European Journal of Operational Research, 116(1), pp. 16-32. doi:10.1016/S0377-2217(98)00051-4
|