跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:湯幃皓
研究生(外文):Wei-Hao Tang
論文名稱:皮膚貼片式脈搏壓電能量擷取器與工作模態之研究與實作
論文名稱(外文):Study and Application of Piezoelectric Pulse-wave Energy Harvester Skin Patch Operating in 3-1, 3-3 Mode
指導教授:吳文中
口試委員:李世光舒貽忠林順區
口試日期:2018-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:84
中文關鍵詞:鋯鈦酸鉛壓電材料能量擷取壓電模態氣膠沉積法
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
面對人口高齡化下逐年攀升的慢性疾病發病率,在醫療資源與人力的使用上勢必大幅上升,為了減緩資源開銷,因此以健康診斷為目的穿戴式電子裝置逐漸興起。然而這些感測裝置若以電池作為能量供給來源會有有限的使用壽命與環保的爭議,因此,近年來各研究團隊紛紛發展從人體身上擷取潛藏的各式能量轉為電能,目的是增加電池的使用壽命,減少對電池的依賴。
有鑑於手環式穿戴裝置的熱潮,加上人體手腕脈搏穩定且規律的跳動,因此本篇論文研究建立在手腕脈搏之振動能量擷取。本論文使用機電轉換效率相當高的壓電材料作為能量擷取器,選取之壓電材料為市面普遍應用的鋯鈦酸鉛(PZT),製作出橋式結構之脈搏能量擷取器。延續本團隊過去優化的氣膠沉積製程與壓電薄膜之退火、極化參數,本研究探討軟性(AC750)和硬性(MPT)壓電粉末之輸出比較、{3-1}模態與{3-3}模態之輸出比較,並利用數值模擬加以檢驗實驗結果。
實驗結果顯示,在{3-1}模態下利用AC750與MPT壓電粉末製成相同尺寸的雙層壓電能量擷取器,透過脈搏震動,在最佳阻抗下分別產生最大電壓71.1和104.8mV,對應之瞬時輸出功率為5.05和13.4nW;在{3-3}模態下,利用MPT壓電粉末製成單層壓電能量擷取器在最佳阻抗下可產生最大輸出電壓190mV,瞬時輸出功率為4.4nW,儘管目前開發的能量擷取器之輸出功率未達到一定輸出,但仍顯示了脈搏能量擷取應用之可能與潛力。
Due to the growing population with chronic diseases in aging society, the expenses of healthcare increases dramatically. Thus, wearable devices gradually prosper for the purpose of health condition monitoring to reduce healthcare expenses. However, if these sensor devices are powered by batteries, they will cause the limited service time and environmental impact. In order to extend the service time of batteries, or even replace them, many researchers have been studied on transforming the dynamic energy from human motion into electrical energy. Due to the popularity of the wristband-type devices and regular pulse from human arterial pulse, this study is based on harvesting the energy from arterial pulse. The piezoelectric material is chosen to fabricate the energy harvester because of its high electromechanical coupling factor. The bridge-type pulse wave energy harvester (EH) is made by commercial PZT. With the optimized fabrication process of aerosol deposition method, annealing, and poling of PZT thin film by our previous study, the output performances between soft-type (AC750) and hard-type (MPT) PZT, between {3-1} and {3-3} mode are compared, which will further be confirmed by numerical simulation. The experimental results show when operating in {3-1} mode, AC750 and MPT bimorph EH with same dimension generate the maximum voltage of 71.1 mV and 104.8 mV under an optimal load when measuring pulse-wave. The corresponding instantaneous power are 5.05 nW and 13.4 nW. When in {3-3} mode, MPT unimorph EH generates the maximum voltage of 190 mV and 4.4 nW. The output power hasn’t achieved to certain level so far, but it still shows the potential application of pulse-wave EH.
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第1章 緒論 1
1.1 研究動機 1
1.2 論文目標 5
1.3 文獻回顧 6
1.4 論文架構 11
第2章 壓電簡介 12
2.1 壓電材料介紹 12
2.1.1 壓電材料緣起 12
2.1.2 壓電、焦電、鐵電效應 13
2.1.3 壓電材料種類 17
2.2 壓電材料選擇 18
2.3 鋯鈦酸鉛介紹 19
2.4 壓電本構方程式 21
2.5 壓電薄膜製程 24
2.6 壓電薄膜製程比較 27
第3章 橋式能量擷取元件 29
3.1 能量擷取元件結構 29
3.2 元件材料考量 36
3.2.1 壓電材料 36
3.2.2 基板材料 37
3.2.3 工作模態 38
3.3 數值模擬 41
3.3.1 {3-1}工作模態 41
3.3.2 {3-3}工作模態 44
第4章 壓電能量擷取元件製作 48
4.1 氣膠沉積製程 48
4.2 金屬微機電製程 49
4.3 壓電薄膜退火 54
4.4 壓電薄膜極化 55
第5章 實驗結果與討論 57
5.1 壓電材料與薄膜分析 57
5.1.1 晶相分析 57
5.1.2 表面分析 60
5.1.3 元素分析 63
5.1.4 鐵電分析 63
5.2 元件輸出表現 65
5.2.1 量化測試 65
5.2.2 極化電場測試 66
5.2.3 人體量測 67
5.2.4 長時間量測 75
第6章 結論與展望 77
6.1 結論 77
6.2 未來展望 78
參考文獻 80
[1]A. Kaul. (2016). Weaable Device Market Forecasts. Available: https://goo.gl/j51c1T
[2]F. Schumacher. (2014). Wearable Technologies News Roundup. Available: https://goo.gl/dJ2oTY
[3]A. J. Bandodkar, W. Jia, C. Yardımcı, X. Wang, J. Ramirez, and J. Wang, "Tattoo-based noninvasive glucose monitoring: a proof-of-concept study," Analytical chemistry, vol. 87, pp. 394-398, 2014.
[4]GENTAG. Available: http://gentag.com/
[5]M. Raj, S. Patel, C. H. Lee, Y. Ma, A. Banks, R. McGinnis, et al., "Multifunctional Epidermal Sensor Systems Epidermal Electronics Multifunctional Epidermal Sensor Systems with Ultrathin Encapsulation Packaging UltraThin Encapsulation Packaging for Health Monitoring Multifunctional Epidermal Sensor Systems," in Stretchable Bioelectronics for Medical Devices and Systems, ed: Springer, 2016, pp. 193-205.
[6]Z. Cao, J. He, Q. Wang, M. Hara, H. Oguchi, and H. Kuwano, "High output power AlN vibration-driven energy harvesters," Journal of Physics: Conference Series, vol. 476, p. 012034, 2013.
[7]Y. Tsujiura, E. Suwa, F. Kurokawa, H. Hida, K. Suenaga, K. Shibata, et al., "Lead-Free Piezoelectric MEMS Energy Harvesters of (K,Na)NbO3Thin Films on Stainless Steel Cantilevers," Japanese Journal of Applied Physics, vol. 52, p. 09KD13, 2013.
[8]K. Morimoto, I. Kanno, K. Wasa, and H. Kotera, "High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers," Sensors and Actuators A: Physical, vol. 163, pp. 428-432, 2010.
[9]R. Allan. (2012). Energy Harvesting Efforts Are Picking Up Steam. Available: http://goo.gl/YK819X
[10]T.-K. Lin, "Performance improvement of PZT micro piezoelectric energy harvester fabricated by Aerosol deposition method," 2017.
[11]R. Amirtharajah, "Design of a low power VLSI systems powered by ambient mechanical vibration," Massachusetts Institute of Technology, 1999.
[12]E. Arroyo, Y. Jia, S. Du, S. T. Chen, and A. Seshia, "High temperature performance of a piezoelectric micro cantilever for vibration energy harvesting," Journal of Physics: Conference Series, vol. 773, p. 012001, 2016.
[13]L. Van Minh, T. Sano, T. Fujii, and H. Kuwano, "Vibrational micro-energy harvesters utilizing Nb-doped Pb(Zr,Ti)O3films on stainless steel substrates," Journal of Physics: Conference Series, vol. 773, p. 012003, 2016.
[14]W.-H. Tang, T.-K. Lin, C.-T. Chen, Y.-H. Fu, S.-C. Lin, and W.-J. Wu, "A High Performance Piezoelectric Micro Energy Harvester Based on Stainless Steel Substrates," 2017.
[15]Z. L. Wang, "Towards self‐powered nanosystems: from nanogenerators to nanopiezotronics," Advanced Functional Materials, vol. 18, pp. 3553-3567, 2008.
[16]L. Swallow, J. Luo, E. Siores, I. Patel, and D. Dodds, "A piezoelectric fibre composite based energy harvesting device for potential wearable applications," Smart Materials and Structures, vol. 17, p. 025017, 2008.
[17]A. Delnavaz and J. Voix, "Flexible piezoelectric energy harvesting from jaw movements," Smart Materials and Structures, vol. 23, p. 105020, 2014.
[18]A. Delnavaz and J. Voix, "Energy harvesting for in-ear devices using ear canal dynamic motion," IEEE Transactions on Industrial Electronics, vol. 61, pp. 583-590, 2014.
[19]F. Guido, A. Qualtieri, L. Algieri, E. D. Lemma, M. De Vittorio, and M. T. Todaro, "AlN-based flexible piezoelectric skin for energy harvesting from human motion," Microelectronic Engineering, vol. 159, pp. 174-178, 2016.
[20]S. Yoon, J. K. Sim, and Y.-H. Cho, "A Flexible Piezoelectric Pulsewave Energy Harvester for Application to High-Efficiency Multi-Functional Skin Patches," Journal of Microelectromechanical Systems, vol. 25, pp. 388-393, 2016.
[21]S. Yoon and Y.-H. Cho, "A skin-attachable flexible piezoelectric pulse wave energy harvester," in Journal of Physics: Conference Series, 2014, p. 012026.
[22]K. Ylli, D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, and Y. Manoli, "Energy harvesting from human motion: exploiting swing and shock excitations," Smart Materials and Structures, vol. 24, p. 025029, 2015.
[23]N. S. Shenck and J. A. Paradiso, "Energy scavenging with shoe-mounted piezoelectrics," IEEE micro, vol. 21, pp. 30-42, 2001.
[24]J. Granstrom, J. Feenstra, H. A. Sodano, and K. Farinholt, "Energy harvesting from a backpack instrumented with piezoelectric shoulder straps," Smart Materials and Structures, vol. 16, p. 1810, 2007.
[25]Y. Ahn, S. Song, and K.-S. Yun, "Woven flexible textile structure for wearable power-generating tactile sensor array," Smart Materials and Structures, vol. 24, p. 075002, 2015.
[26]J.-H. Yang, H.-S. Cho, S.-H. Park, S.-H. Song, K.-S. Yun, and J. H. Lee, "Effect of garment design on piezoelectricity harvesting from joint movement," Smart Materials and Structures, vol. 25, p. 035012, 2016.
[27]D. Yun, J. Park, and K.-S. Yun, "Highly stretchable energy harvester using piezoelectric helical structure for wearable applications," Electronics Letters, vol. 51, pp. 284-285, 2015.
[28]J. Curie and P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces," Bull. soc. min. de France, vol. 3, p. 90, 1880.
[29]M. Lippmann, "On the principle of the conservation of electricity," 1881.
[30]N. Ma, B.-P. Zhang, W.-G. Yang, and D. Guo, "Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics," Journal of the European Ceramic Society, vol. 32, pp. 1059-1066, 2012.
[31]Wikipedia. Piezoelectricity. Available: https://goo.gl/CYavkJ
[32]M. Stewart, M. Cain, and D. Hall, Ferroelectric hysteresis measurement and analysis: National Physical Laboratory Teddington, 1999.
[33]F.-H. Ko, Y.-C. Hsu, M.-T. Wang, and G.-w. S. Huang, "Fabrication of a gas sensor with a piezoelectric PZT film deposited by a novel hydrothermal microwave-assisted annealing," Microelectronic engineering, vol. 84, pp. 1300-1304, 2007.
[34]R. S. Dahiya, D. Cattin, A. Adami, C. Collini, L. Barboni, M. Valle, et al., "Towards tactile sensing system on chip for robotic applications," IEEE Sensors Journal, vol. 11, pp. 3216-3226, 2011.
[35]B. Lee, S. Lin, W. Wu, X. Wang, P. Chang, and C. Lee, "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film," Journal of Micromechanics and Microengineering, vol. 19, p. 065014, 2009.
[36]C. Sun, J. Shi, D. J. Bayerl, and X. Wang, "PVDF microbelts for harvesting energy from respiration," Energy & Environmental Science, vol. 4, pp. 4508-4512, 2011.
[37]A. Jain, P. KJ, A. K. Sharma, A. Jain, and R. PN, "Dielectric and piezoelectric properties of PVDF/PZT composites: A review," Polymer Engineering & Science, vol. 55, pp. 1589-1616, 2015.
[38]S. Qi, R. Shuttleworth, S. O. Oyadiji, and J. Wright, "Design of a multiresonant beam for broadband piezoelectric energy harvesting," Smart Materials and Structures, vol. 19, p. 094009, 2010.
[39]H. J. Song, Y.-T. Choi, N. M. Wereley, and A. S. Purekar, "Energy harvesting devices using macro-fiber composite materials," Journal of Intelligent Material Systems and Structures, vol. 21, pp. 647-658, 2010.
[40]B. Noheda and D. Cox, "Bridging phases at the morphotropic boundaries of lead oxide solid solutions," Phase Transitions, vol. 79, pp. 5-20, 2006.
[41]M. Morozov and D. Damjanovic, "Charge migration in Pb (Zr, Ti) O 3 ceramics and its relation to ageing, hardening, and softening," Journal of Applied Physics, vol. 107, p. 034106, 2010.
[42]C. Galassi, E. Roncari, C. Capiani, and F. Craciun, "Processing and characterization of high Qm ferroelectric ceramics," Journal of the European ceramic society, vol. 19, pp. 1237-1241, 1999.
[43]V. Kugel and L. Cross, "Behavior of soft piezoelectric ceramics under high sinusoidal electric fields," Journal of applied physics, vol. 84, pp. 2815-2830, 1998.
[44]D. Barrow, T. Petroff, R. Tandon, and M. Sayer, "Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process," Journal of Applied Physics, vol. 81, pp. 876-881, 1997.
[45]R. Herdier, M. Detalle, D. Jenkins, C. Soyer, and D. Remiens, "Piezoelectric thin films for MEMS applications—A comparative study of PZT, 0.7 PMN–0.3 PT and 0.9 PMN–0.1 PT thin films grown on Si by rf magnetron sputtering," Sensors and Actuators A: Physical, vol. 148, pp. 122-128, 2008.
[46]A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, "Prospects of nanotechnology in clinical immunodiagnostics," Sensors, vol. 10, pp. 6535-6581, 2010.
[47]G. White, C. Breward, P. Howell, and R. Young, "A model for the screen-printing of Newtonian fluids," Journal of engineering mathematics, vol. 54, pp. 49-70, 2006.
[48]J. Akedo and M. Lebedev, "Microstructure and electrical properties of lead zirconate titanate (Pb (Zr52/Ti48) O3) thick films deposited by aerosol deposition method," Japanese journal of applied physics, vol. 38, p. 5397, 1999.
[49]J. Exner, M. Hahn, M. Schubert, D. Hanft, P. Fuierer, and R. Moos, "Powder requirements for aerosol deposition of alumina films," Advanced Powder Technology, vol. 26, pp. 1143-1151, 2015.
[50]C. Chao-Ting, "Fabrication of High-Quality Piezoelectric Micro Energy Harvester and of 3-1, 3-3 Mode Optimization."
[51]A. J. Bank, D. R. Kaiser, S. Rajala, and A. Cheng, "In vivo human brachial artery elastic mechanics: effects of smooth muscle relaxation," Circulation, vol. 100, pp. 41-47, 1999.
[52]M. Le Van, M. Hara, T. Yokoyama, T. Nishihara, M. Ueda, and H. Kuwano, "Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters [Correspondence]," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, pp. 2005-2008, 2015.
[53]L. V. Minh, M. Hara, F. Horikiri, K. Shibata, T. Mishima, and H. Kuwano, "Bulk micromachined energy harvesters employing (K, Na)NbO3thin film," Journal of Micromechanics and Microengineering, vol. 23, p. 035029, 2013.
[54]R. Elfrink, T. M. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. van Andel, et al., "Vibration energy harvesting with aluminum nitride-based piezoelectric devices," Journal of Micromechanics and Microengineering, vol. 19, p. 094005, 2009.
[55]S.-C. Lin and W.-J. Wu, "Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method," Journal of Micromechanics and Microengineering, vol. 23, p. 125028, 2013.
[56]B. Xu, Y. Ye, L. E. Cross, J. J. Bernstein, and R. Miller, "Dielectric hysteresis from transverse electric fields in lead zirconate titanate thin films," Applied Physics Letters, vol. 74, pp. 3549-3551, 1999.
[57]S.-B. Kim, H. Park, S.-H. Kim, H. C. Wikle, J.-H. Park, and D.-J. Kim, "Comparison of MEMS PZT cantilevers based on $ d_ {31} $ and $ d_ {33} $ modes for vibration energy harvesting," Journal of microelectromechanical systems, vol. 22, pp. 26-33, 2013.
[58]H. Hu, C. Peng, and S. Krupanidhi, "Effect of heating rate on the crystallization behavior of amorphous PZT thin films," Thin Solid Films, vol. 223, pp. 327-333, 1993.
[59]J. Ryu, J.-J. Choi, B.-D. Hahn, D.-S. Park, W.-H. Yoon, and K.-H. Kim, "Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K 0.5 Na 0.5) Nb O 3 thick films by aerosol deposition," Applied physics letters, vol. 90, p. 152901, 2007.
[60]P. Salvi, E. Magnani, F. Valbusa, D. Agnoletti, C. Alecu, L. Joly, et al., "Comparative study of methodologies for pulse wave velocity estimation," Journal of human hypertension, vol. 22, p. 669, 2008.
[61]H.-J. Tseng, W.-C. Tian, and W.-J. Wu, "Flexible PZT thin film tactile sensor for biomedical monitoring," Sensors, vol. 13, pp. 5478-5492, 2013.
[62]J. Si, H. Ono, K. Uchida, S. Nozaki, H. Morisaki, and N. Itoh, "Correlation between the dielectric constant and porosity of nanoporous silica thin films deposited by the gas evaporation technique," Applied Physics Letters, vol. 79, pp. 3140-3142, 2001.
[63]G. Arlt, D. Hennings, and G. De With, "Dielectric properties of fine‐grained barium titanate ceramics," Journal of applied physics, vol. 58, pp. 1619-1625, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊