|
1. Borzani W, Souza, SJ (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotechnol Lett 17:1271-1272. https://doi.org/10.1007/BF00128400 2. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137-143. https://doi.org/10.1016/S0144-8617(99)00050-8 3. Cakar F, Özer I, Aytekin AÖ, Şahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7-13. https://doi.org/10.1016/j.carbpol.2014.01.103 4. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107-124. 5. Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. The J Phys Chem B 115:8453-8457. https://doi.org/10.1021/jp204422v 6. Hu Y, Catchmark JM (2010). Influence of 1‐methylcyclopropene (1‐MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture. Lett Appl Microbiol 51:109-113. https://doi.org/10.1111/j.1472-765X.2010.02866.x 7. Huang C, Guo HJ, et al (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198-202. https://doi.org/10.1016/j.carbpol.2015.09.043 8. Jozala AF, Pértile RAN et al (2015) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99:1181-1190. https://doi.org/10.1007/s00253-014-6232-3 9. Jung HI, Lee OM et al (2010) Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses–corn steep liquor medium. Appl Biochem Biotechnol 162:486-497. https://doi.org/10.1007/s12010-009-8759-9 10. Keshk S, Sameshima K (2006) Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme Microb Technol 40:4-8. https://doi.org/10.1016/j.enzmictec.2006.07.037 11. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358-3393. https://doi.org/10.1002/anie.200460587 12. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333-335. https://doi.org/10.1016/j.carbpol.2008.11.009 13. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115-119. https://doi.org/10.1016/j.carbpol.2014.11.061 14. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113-119. https://doi.org/10.1016/j.biortech.2013.10.052 15. Lu Z, Zhang Y, Chi Y, Xu N, Yao W, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27:2281-2285. https://doi.org/10.1007/s11274-011-0692-8 16. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576-583. https://doi.org/10.1111/j.1365-2672.2009.04226.x 17. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941-3994. http://doi.org/10.1039/C0CS00108B 18. Onabe F (1978) Studies on interfacial properties of polyelectrolyte‐cellulose systems. I. Formation and structure of adsorbed layers of cationic polyelectrolyte‐(poly‐DMDAAC) on cellulose fibers. J Appl Polym Sci 22:3495-3510. https://doi.org/10.1002/app.1978.070221214 19. Trovatti E, Serafim LS, Freire CS, Silvestre AJ, Neto CP (2011) Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym 86:1417-1420. https://doi.org/10.1016/j.carbpol.2011.06.046 20. Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32:420-424. https://doi.org/10.1016/S0003-2697(69)80009-6 21. Wagberg L (2000) Polyelectrolyte adsorption onto cellulose fibres-A review. Nord Pulp Pap Res J 15:586-597. https://doi.org/10.3183/npprj-2000-15-05-p586-597 22. Wen CY (2017) Effect of Substrate-induced Strain on the Alignment, Morphology, and Characteristics of Regenerated Cellulose Films, National Taiwan University 23.Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116-121. https://doi.org/10.1016/j.carbpol.2012.05.003 24. Wu SC, Lia YK (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B: Enzym 54:103-108. https://doi.org/10.1016/j.molcatb.2007.12.021 25. Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74:659-665. https://doi.org/10.1016/j.carbpol.2008.04.028 26. Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644-648. https://doi.org/10.1021/bm050799c 27. Zhang J, Zhang J, Lin L, Chen T, Zhang J, Liu S et al (2009) Dissolution of microcrystalline cellulose in phosphoric acid—molecular changes and kinetics. Molecules, 14:5027-5041. https://doi.org/10.3390/molecules14125027
|