跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳顧德
研究生(外文):Ku-Te Chen
論文名稱:以台灣櫸製備木寡糖與奈米纖維素
論文名稱(外文):Preparation of xylooligosaccharides (XOs) and nanocellulose from Taiwan Zelkova
指導教授:柯淳涵柯淳涵引用關係
指導教授(外文):Chun-Han Ko
口試委員:藍浩繁張芳志張慶源張家驥
口試日期:2018-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:86
中文關鍵詞:奈米纖維素木寡糖機械預處理膜過濾酵素水解硫酸水解
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過化學及機械預處理等方法搭配酵素水解,以台灣原生植物台灣櫸為原料,製備兩種高經濟價值之纖維素衍生物:奈米纖維素及木寡糖。由於奈米材料之優異機能及再生性等綠色永續材料特性,奈米纖維素在應用上具高度潛力。木寡糖可作為腸道系統的益生原達到腸胃保健之功效,同時因其五碳醣的結構,不造成熱量負擔。
首先,將原物料進行高強度碎磨之機械預處理,接著經過鹼萃反應提取出木聚醣,隨後以酒精沈澱、酒精沈澱複合膜過濾以及膜過濾這三種方式純化木聚醣,最後以10、30、50 IU/mL 三種酵素劑量進行水解,找出較佳的純化方法、酵素劑量及水解時間。結果發現,酒精沈澱的純化方式之醣回收率最佳,高達91.14 %,但是在木寡糖收率的部分,奈米膜過濾所得的木聚醣在酵素水解的階段產率較高,為59.20 %。
生產奈米纖維素部分,將探討鹼萃及機械預處理對產率的影響。結果發現,兩種預處理對於奈米纖維素的生產效率皆有提升,最佳的反應條件為:機械磨碎及鹼萃處理後,透過64 %wt硫酸水解30分鐘,可以得到粒徑約154 ± 40 nm、Zeta電位-40.7 mV且產率為37.1 %的奈米纖維素溶液。
In this study, chemical and mechanical pretreatments were used in combination with enzyme hydrolysis to produce two kinds of valuable cellulose derivatives from Taiwan Zelkova which is a native species in Taiwan. Nanocellulose has great potential for application because of attractive properties in nanoscale and renewable. Xylooligosaccharides (XOS) could act as probiotic for the intestinal system and don’t cause any caloric burden.
First, the raw materials will be mechanically pretreated with high-strength crushing to obtain the powder Taiwan Zelkova, then the xylan will be extracted by alkaline extraction, and then three kinks of purification systems including ethanol-precipitation, ethanol-precipitation plus ultrafiltration and nanofiltration will be conduct. The final enzyme hydrolysis was performed at 10, 30, and 50 IU/mL enzyme dosages. As a result, the sugar recovery rate of the ethanol precipitation was the best noted as 91.14 %, and the yield of xylooligosaccharides of nanofiltration was highest for enzyme hydrolysis, which was 59.20 %.
In nanocellulose production phase, the effects of alkali extraction and mechanical pretreatment on production of nanocellulose will be discussed. The results showed that the two pretreatments all improved the production efficiency of nanocellulose. The optimal results of nanocellulose preparation were -40.7 mV zeta (ζ) potential, particle size 154 ± 40 nm and yield 37.1 % with 30 min hydrolysis.
口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
Figure Index vii
Table Index ix
List of Abbreviations x
List of Samples xi
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Structure and reserves of lignocellulose biomass 4
2.1.1 Cellulose and crystalline nanocellulose (CNC) 5
2.1.2 Hemicellulose 7
2.1.3 Lignin 8
2.2 Taiwan Zelkova 9
2.3 Xylan 9
2.3.1 Structures and properties of xylan 9
2.3.2 Preparation of xylan from different methods 10
2.3.3 Purification of xylan from different methods 14
2.4 Xylooligosaccharides (XOs) 16
2.4.1 Description of oligosaccharides 16
2.4.2 Structures and properties of XOs 17
2.4.3 Applications on XOs 17
2.4.3 Productions of XOs 18
2.5 Enzymatic hydrolysis 19
Chapter 3 Materials and Methods 20
3.1 Research framework 20
3.2 Raw material and analysis 22
3.3 Pretreatments of material 22
3.4 Enzyme 22
3.5 Taiwan Zelkova xylan (ZX) extraction and purification 23
3.6 Membrane filtration system 24
3.7 XOs hydrolysis from xylan(ZX) 25
3.8 Analytical procedures of sugar assay 25
3.9 Preparation of CNCs 26
3.10 Particle size measurement 26
3.11 Surface morphology measurement 27
3.12 X-ray diffraction measurement 27
3.13 Thermogravimetric analysis (TGA) 28
Chapter 4 Results and Discussion 29
4.1 Chemical composition of raw materials 29
4.2 XOs production from ZX 29
4.2.1 Desalination and total sugars recovery of EZX 29
4.2.2 Flux change by different membrane filtration 31
4.2.3 Desalination and total sugars recovery of EUZX and NZX 39
4.2.4 HTec hydrolysis of ZX 48
4.2.5 Chemical compositions of ZX residue and mass balance of ZX 54
4.3 CNCs production from Taiwan Zelkova 56
4.3.1 Yellowish color 56
4.3.2 Particle size measurement 59
4.3.3 Fiber morphology 64
4.3.4 Zeta potential measurement 70
4.3.5 Thermogravimetric analysis (TGA) 73
4.4 Comprehensive comparison with literature 76
Chapter 5 Conclusions 79
Chapter 6 Reference 80
Aachary, A. A., & Prapulla, S. G. (2008). Corncob-induced endo-1, 4-β-D-xylanase of Aspergillus oryzae MTCC 5154: production and characterization of xylobiose from glucuronoxylan. Journal of Agricultural and Food Chemistry, 56(11), 3981-3988.
Aachary, A. A., & Prapulla, S. G. (2009). Value addition to corncob: production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresource Technology, 100(2), 991-995.
Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631-653.
Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565.
Alemdar, A., & Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technology, 99(6), 1664-1671.
Allen, E. W., & Tollens, B. (1890). Ueber Holzzucker (Xylose) und Holzgummi (Xylan). Justus Liebigs Annalen der Chemie, 260(3), 289-306.
Bajpai, P. (1997). Microbial xylanolytic enzyme system: properties and applications. Advances in Applied Microbiology, 43, 141-194.
Beg, Q., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56(3-4), 326-338.
Cay-Durgun, P., & Lind, M. L. (2018). Nanoporous materials in polymeric membranes for desalination. Current Opinion in Chemical Engineering, 20, 19-27.
Chanda, S. K., Hirst, E. L., Jones, J. K. N., & Percival, E. G. V. (1950). 262. The constitution of xylan from esparto grass (Stipa tenacissima, L.). Journal of the Chemical Society, 1289-1297.
Chen, W., Li, Q., Wang, Y., Yi, X., Zeng, J., Yu, H., ... & Li, J. (2014). Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem, 7(1), 154-161.
Cheng, M., Qin, Z., Liu, Y., Qin, Y., Li, T., Chen, L., & Zhu, M. (2014). Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. Journal of Materials Chemistry A, 2(1), 251-258.
Corrêa, A. C., de Morais Teixeira, E., Pessan, L. A., & Mattoso, L. H. C. (2010). Cellulose nanofibers from curaua fibers. Cellulose, 17(6), 1183-1192.
Coughlan, M. P., & Hazlewood, G. P. (1993). beta‐1, 4‐D‐xylan‐degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnology and Applied Biochemistry, 17(3), 259-289.
de Carvalho Benini, K. C. C., Voorwald, H. J. C., Cioffi, M. O. H., Rezende, M. C., & Arantes, V. (2018). Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydrate Polymers, 192, 337-346.
Doherty, W. O., Mousavioun, P., & Fellows, C. M. (2011). Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products, 33(2), 259-276.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
Ebringerová, A., & Hromádková, Z. (2010). An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Open Chemistry, 8(2), 243-257.
Frone, A. N., Panaitescu, D. M., Donescu, D., Spataru, C. I., Radovici, C., Trusca, R., & Somoghi, R. (2011). Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources, 6(1), 487-512.
Gehmayr, V., Schild, G., & Sixta, H. (2011). A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose, 18(2), 479-491.
Goulas, A. K., Kapasakalidis, P. G., Sinclair, H. R., Rastall, R. A., & Grandison, A. S. (2002). Purification of oligosaccharides by nanofiltration. Journal of Membrane Science, 209(1), 321-335.
Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-18.
Hsu, C. K., Liao, J. W., Chung, Y. C., Hsieh, C. P., & Chan, Y. C. (2004). Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. The Journal of Nutrition, 134(6), 1523-1528.
Hsu, C.-K., Liao, J.-W., Chung, Y.-C., Hsieh, C.-P., Chan, Y.-C. 2004. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. The Journal of Nutrition, 134, 1523-1528.
Hu, F., & Ragauskas, A. (2012). Pretreatment and lignocellulosic chemistry. Bioenergy Research, 5(4), 1043-1066.
Hutkins, R. W., Krumbeck, J. A., Bindels, L. B., Cani, P. D., Fahey Jr, G., Goh, Y. J & Vaughan, E. (2016). Prebiotics: why definitions matter. Current Opinion in Biotechnology, 37, 1-7.
Hutkins, R. W., Krumbeck, J. A., Bindels, L. B., Cani, P. D., Fahey Jr, G., Goh, Y. J & Vaughan, E. (2016). Prebiotics: why definitions matter. Current Opinion in Biotechnology, 37, 1-7.
Hutterer, C., Schild, G., Kliba, G., & Potthast, A. (2016). Lignin profiling in extracted xylans by size-exclusion chromatography. Carbohydrate Polymers, 151, 821-826.
Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., & Sheltami, R. M. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3), 855-866.
Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377-391.
Liu, C., Li, B., Du, H., Lv, D., Zhang, Y., Yu, G & Peng, H. (2016). Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate Polymers, 151, 716-724.
Mandal, A., & Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291- 1299.
Moniz, P., Pereira, H., Duarte, L. C., & Carvalheiro, F. (2014). Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw. Industrial Crops and Products, 62, 460-465.
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686.
Mukherjee, D., & Patil, C. G. (2011). Epidemiology and the global burden of stroke. World Neurosurgery, 76(6), S85-S90.
Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: a review. Carbohydrate Polymers, 68(3), 587-597.
Palle, I. (2008). Carboxymethylation of cellulose from kenaf (Hibiscus cannabinus L.) core for hydrogel production (Doctoral dissertation, Universiti Putra Malaysia). Retrived from http://psasir.upm.edu.my/id/eprint/5100/1/FH_2008_6.pdf
Patil, J. H., Raj, A. M., & Gavimath, C. C. (2011). Study on effect of pretreatment methods on biomethanation of water hyacinth. International Journal of Advanced Biotechnology and Research, 2(1), 143-147.
Peng, F., Bian, J., Peng, P., Xiao, H., Ren, J. L., Xu, F., & Sun, R. C. (2012). Separation and characterization of acetyl and non-acetyl hemicelluloses of Arundo donax by ammonium sulfate precipitation. Journal of Agricultural and Food Chemistry, 60(16), 4039-4047.
Peng, F., Bian, J., Peng, P., Xiao, H., Ren, J. L., Xu, F., & Sun, R. C. (2012). Separation and characterization of acetyl and non-acetyl hemicelluloses of Arundo donax by ammonium sulfate precipitation. Journal of Agricultural and Food Chemistry, 60(16), 4039-4047.
Pinelo, M., Jonsson, G., & Meyer, A. S. (2009). Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance. Separation and Purification Technology, 70(1), 1-11.
Qua, E. H., Hornsby, P. R., Sharma, H. S. S., & Lyons, G. (2011). Preparation and characterisation of cellulose nanofibres. Journal of Materials Science, 46(18), 6029-6045.
Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., ... & Mielenz, J. R. (2006). The path forward for biofuels and biomaterials. Science, 484-489.
Ratanakhanokchai, K., Waeonukul, R., Pason, P., Tachaapaikoon, C., Kyu, K. L., Sakka, K., & Mori, Y. (2013). Paenibacillus curdlanolyticus strain B-6 multienzyme complex: A novel system for biomass utilization. InTech.
Sako, T., Matsumoto, K., & Tanaka, R. (1999). Recent progress on research and applications of non-digestible galacto-oligosaccharides. International Dairy Journal, 9(1), 69-80.
Samanta, A. K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A. P., Senani, S., & Sridhar, M. (2015). Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioactive Carbohydrates and Dietary Fibre, 5(1), 62-71.
Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresource Technology, 178, 178-186.
Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786-794.
Shrestha, S., Fonoll, X., Khanal, S. K., & Raskin, L. (2017). Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives. Bioresource Technology, 245, 1245-1257.
Smil, V. (1999). Nitrogen in crop production: An account of global flows. Global Biogeochemical Cycles, 13(2), 647-662.
Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1-11.
Tian, C., Yi, J., Wu, Y., Wu, Q., Qing, Y., & Wang, L. (2016). Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydrate Polymers, 136, 485-492.
Vazquez, M. J., Alonso, J. L., Domınguez, H., & Parajo, J. C. (2000). Xylooligosaccharides: manufacture and applications. Trends in Food Science & Technology, 11(11), 387-393.
Willför, S., Sundberg, K., Tenkanen, M., & Holmbom, B. (2008). Spruce-derived mannans–A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydrate Polymers, 72(2), 197-210.
Zinbo, M., & Timell, T. E. (1965). The degree of branching of hardwood xylans. Svensk PappTidn., 68(19).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top