Altman, E. I., Marco, G., & Varetto, F. (1994). Corporate Distress Diagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks (the Italian Experience). Journal of Banking & Finance, 18(3), 505–529. https://doi.org/10.1016/0378-4266(94)90007-8
Bailey, W. (1994). Risk and Return on China’s New Stock Markets: Some Preliminary Evidence. Pacific-Basin Finance Journal, 2(2–3), 243–260. https://doi.org/10.1016/0927-538X(94)90019-1
Budhani, N., Jha, C. K., & Budhani, S. K. (2014). Prediction of Stock Market Using Artificial Neural Network. In 2014 International Conference of Soft Computing Techniques for Engineering and Technology (ICSCTET) (pp. 1–8). IEEE. https://doi.org/10.1109/ICSCTET.2015.7371196
Burrell, P. R., & Folarin, B. O. (1997). The Impact of Neural Networks in Finance. Neural Computing & Applications, 6(4), 193–200. https://doi.org/10.1007/BF01501506
Chakravarty, S., Sarkar, A., & Wu, L. (1998). Information Asymmetry, Market Segmentation and the Pricing of Cross-listed Shares: Theory and Evidence From Chinese A and B Shares. Journal of International Financial Markets, Institutions and Money, 8(3–4), 325–356. https://doi.org/10.1016/S1042-4431(98)00041-9
Chowdhry, B., & Nanda, V. (1991). Multimarket Trading and Market Liquidity. The Review of Financial Studies, 4(3), 483–511.
Cybenko, G. (1992). Approximation by Superpositions of a Sigmoidal Function. Mathematics of Control, Signals, and Systems, 5(4), 455–455. https://doi.org/10.1007/BF02134016
Farias Nazário, R. T., e Silva, J. L., Sobreiro, V. A., & Kimura, H. (2017). A Literature Review of Technical Analysis on Stock Markets. The Quarterly Review of Economics and Finance, 66, 115–126. https://doi.org/10.1016/j.qref.2017.01.014
Fernald, J., & Rogers, J. H. (2002). Puzzles in the Chinese Stock Market. Review of Economics and Statistics, 84(3), 416–432. https://doi.org/10.1162/003465302320259448
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, MA : MIT Press, 2016.
Gulcehre, C., Moczulski, M., Denil, M., & Bengio, Y. (2016). Noisy Activation Functions. Retrieved from http://arxiv.org/abs/1603.00391
Hang Seng Indexes Company Limited. (2017a). Index Methodology for Managing the Hang Seng Stock Connect China AH Index Series. Retrieved from https://www.hsi.com.hk/static/uploads/contents/zh_hk/dl_centre/methodologies/IM_chinaahc.pdf
Hang Seng Indexes Company Limited. (2017b). Trading Mechanism of Closing Auction Session (CAS) in the Securities Market. Retrieved from https://www.hkex.com.hk/-/media/HKEX-Market/News/News-Release/2016/160720news/Trading-Mechanism-of-the-CAS-in-the-Securities-Market.pdf?la=en
Haykin, S. S. (2009). Neural Networks and Learning Machines. New York: Prentice Hall.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer Feedforward Networks are Universal Approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8
Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A Practical Guide to Support Vector Classification. Http://Www.Csie.Ntu.Edu.Tw/~cjlin/Papers/Guide/Guide.Pdf.
Lin, H.-T., & Lin, C.-J. (2005). A Study on Sigmoid Kernels for SVM and the Training of non-psd. Http://Www.Csie.Ntu.Edu.Tw/~cjlin/Papers/Tanh.Pdf. https://doi.org/20060927122853789664
Ma, X. (1996). Capital Controls, Market Segmentation and Stock Prices: Evidence From the Chinese Stock Market. Pacific-Basin Finance Journal, 4(2–3), 219–239. https://doi.org/10.1016/0927-538X(96)00012-1
Mercer, J. (1909). Functions of Positive and Negative Type, and Their Connection with the Theory of Integral Equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 83(559), 69–70. https://doi.org/10.1098/rspa.1909.0075
Nguyen, D. H., & Widrow, B. (1991). Neural Networks for Self-Learning Control Systems. International Journal of Control, 54(6), 1439–1451. https://doi.org/10.1080/00207179108934220
Nicholas Refenes, A., Zapranis, A., & Francis, G. (1994). Stock Performance Modeling Using Neural Networks: A Comparative Study with Regression Models. Neural Networks, 7(2), 375–388. https://doi.org/10.1016/0893-6080(94)90030-2
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning Internal Representations by Error Propagation. In D.E. Rumelhart and J. L. McClelland (Ed.), Parallel Distributed Processing (pp. 318–362). Cambridge, Mass. : MIT Press.
Schierholt, K., & Dagli, C. H. (1996). Stock Market Prediction Using Different Neural Network Classification Architectures. In IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr) (pp. 72–78). IEEE. https://doi.org/10.1109/CIFER.1996.501826
Stulz, R. M., & Wasserfallen, W. (1995). Foreign Equity Investment Restrictions, Capital Flight, and Shareholder Wealth Maximization Theory and Evidence. Review of Financial Studies, 8(4), 1019–1057.
Sun, Q., & Tong, W. H. S. (2000). The Effect of Market Segmentation on Stock Prices: The China Syndrome. Journal of Banking & Finance, 24(12), 1875–1902. https://doi.org/10.1016/S0378-4266(99)00121-1
Tsang, P. M., Kwok, P., Choy, S. O., Kwan, R., Ng, S. C., Mak, J., … Wong, T.-L. (2007). Design and Implementation of NN5 for Hong Kong Stock Price Forecasting. Engineering Applications of Artificial Intelligence, 20(4), 453–461. https://doi.org/10.1016/j.engappai.2006.10.002
Wang, S. S., & Jiang, L. (2004). Location of Trade, Ownership Restrictions, and Market Illiquidity: Examining Chinese A- and H-shares. Journal of Banking & Finance, 28(6), 1273–1297. https://doi.org/10.1016/S0378-4266(03)00119-5
World Bank. (2018). Gross Domestic Product 2017. Retrieved from http://databank. worldbank.org/data/download/GDP.pdf
Wu, M., & Yu, Q. (2010). Empirical Analysis of the Impact Factors of the A Shares and H Shares of the Price Differences. In 2010 International Conference on E-Product E-Service and E-Entertainment (pp. 1–4). IEEE. https://doi.org/10.1109/ICEEE.2010.5661626
Yoon, Y., Swales, G., & Margavio, T. M. (1993). A Comparison of Discriminant Analysis Versus Artificial Neural Networks. Journal of the Operational Research Society, 44(1), 51–60. https://doi.org/10.1057/jors.1993.6
Zhang, G. P. (2004). Forecasting Stock Returns with Artificial Neural Networks. In Neural Networks in Business Forecasting (pp. 47–79). Hershey, PA: Idea Group.
上海證券交易所. (2018). 2018年市場資料. Retrieved from http://www.sse.com.cn/aboutus/publication/factbook/documents/c/4563235.pdf
台灣經濟新報. (2014). 中國市場簡介. Retrieved from https://www.tej.com.tw/twsite/TEJWeb/tw/database/doc/cn.pdf
呂欣. (2010). 基於神經網絡股票價格預測模型及系統的研究. 吉林大學(碩士論文).
姚培福. (2007). 人工神經網路在股票預測中的應用與研究. 昆明理工大學(碩士論文).
孫丹、 張秀豔. (2002). 基於人工神經網絡的股市預測模型. 吉林大學學報, 20(4), 68–70.
師智斌、陳立潮、靳雁霞. (2003). 基於神經網絡的股票交易數據的預測研究. 華北工學院學報, 34(6), 12–16.
張吉剛、梁娜. (2008). 基於SOM網絡-主成分-BP網絡的股價預測. 統計與決策, 2008(6), 158–160.
徐壽福. (2009). 「雙重上市」公司A、H股價格差異的因素研究. 證券市場導報, 2009(2), 54–60.
範海燕. (2009). 市場分割下A股和H股的價格差異研究. 山東大學(碩士論文).
葉怡成. (1995). 類神經網路: 模式應用與實作. 臺北市: 儒林.
邱振祥. (2010). 中國A股與香港H股之折溢價實證分析. 國立臺灣大學(碩士論文).閻威武、常俊林、邵惠鶴. (2004). 基於滾動時間窗的最小二乘支持向量機回歸估計方法及仿真. 上海交通大學學報, 38(004), 524–526.
陳永義、熊秋芬. (2011). 支持向量機方法應用教程. (陳永義、熊秋芬, Eds.). 北京: 氣象出版社.
韓德宗. (2006). A股和H股市場軟分割因素研究-兼論推出QDⅡ的步驟和時機. 商業經濟與管理, 2006(3), 42–46.
香港交易所. (2014). 概念文件:不同投票權架構. Retrieved from http://www.hkex.com.hk/-/media/HKEX-Market/News/Market-Consultations/2011-to-2015/August-2014-Weighted-Voting-Rights/Consultation-paper/cp2014082_c.pdf
香港交易所. (2018a). 投資者資料文件. Retrieved from http://www.hkex.com.hk/-/media/HKEX-Market/Mutual-Market/Stock-Connect/Getting-Started/Information-Booklet-and-FAQ/Information-Book-for-Investors/Investor_Book_Cn_(May).pdf
香港交易所. (2018b). 綜合主板上市規則之聲明. Retrieved from http://www.hkex.com.hk/-/media/HKEX-Market/Listing/Rules-and-Guidance/Listing-Rules/Consolidated-PDFs/Main-Board-Listing-Rules/consol_mb_tc.pdf?la=zh-HK
香港交易所. (2018c). 香港交易所市場資料 2017. Retrieved from http://www.hkex.com.hk/Market-Data/Statistics/Consolidated-Reports/HKEX-Fact-Book?sc_lang=zh-HK
高大啟. (1998). 有教師的線性基本函數前向三層神經網絡結構研究. 計算機學報, 21(1), 80–86.