(100.24.46.10) 您好!臺灣時間:2019/01/24 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:魏志阜
研究生(外文):Chih-Fu Wei
論文名稱:輪班工作、家戶燃香對兒童神經發展功能之影響
論文名稱(外文):Shift Work, Household Incense Burning and Infant Neurodevelopment:Results from the Taiwan Birth Cohort Study
指導教授:陳保中陳保中引用關係
口試委員:謝武勳陳美惠郭育良鄭素芳
口試日期:2018-05-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:90
中文關鍵詞:家戶燃香神經發展粗動作輪班工作出生世代傾向分數配對
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部份中文摘要
研究背景:來自生質燃燒之空氣汙染過往被發現神經發展減緩有所相關,但室內生質燃燒之效應則較少被探討,家戶燃香是台灣地區常見之宗教行為,惟過往研究著眼於出生體重和過敏性疾病,本研究探討家戶燃香和嬰兒神經發展指標間之相關性。
研究方法:台灣出生世代研究 (TBCS)為一全國代表性之世代研究,於嬰兒六及十八個月大時以居家訪視及結構化問卷,評估其發展及暴露狀況;統計方法使用多變項邏輯斯迴歸 (Logistic regression),估計家戶燃香及嬰兒發展指標落於較差十個百分位之相對勝算比;並運用Cox比例風險模式 (Cox proportional hazard model)調整干擾因子,計算家戶燃香及嬰兒發展指標達成月份遲延之相對風險比。
結果:於本研究中,共納入15,310名足月單胞胎,顯示家戶燃香與粗動作發展遲緩之發生率增高相關,如扶持行走之遲延(斷續暴露組:調整後相對勝算比為1.26,95%信賴區間為1.08至1.47;調整後相對風險比為1.07,95%信賴區間為1.03至1.11。持續暴露組:調整後相對勝算比為1.44,95%信賴區間為1.22至1.69;調整後相對風險比為1.11,95%信賴區間為1.07至1.16);及穩定行走之遲延(斷續暴露組:調整後相對勝算比為1.14,95%信賴區間為0.98至1.32;調整後相對風險比為1.07,95%信賴區間為1.03至1.11。持續暴露組:調整後相對勝算比為1.24,95%信賴區間為1.06至1.45;調整後相對風險比為1.19,95%信賴區間為1.04至1.13。)。
結論:本研究顯示家戶燃香與嬰兒之粗動作指標發展有負相關,可能之機制及因果關係值得吾人進一步研究探討。
第二部份中文摘要
研究背景:母親輪班作業過往被發現與早產、胎兒小於妊娠年齡、兒童肥胖及後續行為問題有所相關,但母親輪班作業和嬰兒神經發展間之效應和交互作用尚未被完全闡明,是故本研究著眼於探討母親輪班和嬰兒神經發展指標間之相關性。
研究方法:台灣出生世代研究 (TBCS)為一全國性之世代研究,追蹤西元2005年間,代表性抽樣之母親-嬰兒配對,以居家訪視及結構化問卷,於嬰兒六及十八個月大時評估其發展及暴露狀況;統計方法使用選定變項計算傾向分數進行一比一之配對,並使用多變項條件式邏輯斯迴歸 (Conditional logistic regression) ,估計母親懷孕期間及生產後輪班及嬰兒發展指標落於較差十個百分位之相對勝算比,並運用Cox比例風險模型 (Cox proportional hazard model)檢驗母親輪班及嬰兒發展指標達成月份遲延之風險比。
結果:於本研究中,共納入5,813名足月單胞胎,並藉由傾向分數選擇1,900個案作為配對。母親之持續輪班作業顯示與增高之粗動作發展遲緩相關(扶持行走:調整後相對勝算比為1.30,95%信賴區間為1.02至1.66;調整後相對風險比為1.08,95%信賴區間為1.01至1.17。穩定行走:調整後相對勝算比為1.41,95%信賴區間為1.10至1.79;調整後相對風險比為1.07,95%信賴區間為1.00至1.16。),且在傾向分數配對族群中發現與細動作和社會發展指標之延遲有相關。
結論:本研究顯示母親輪班作業與嬰兒之粗動作、細動作和社會發展指標發展有副相關,可能之機制及長期健康效應值得吾人進一步研究探討。
ABSTRACT: PART I
Background: Air pollution from biomass burning were associated with neurodevelopmental deceleration, but limited studies concerned about the effect of indoor biomass burning. Incense burning is a common household ritual practice in Taiwan, and yet past studies mainly focused on birth weight and allergic disease.
Objectives: We aimed to find the association between incense burning exposure and children’s neurodevelopment.
Methods: In Taiwan Birth Cohort Study (TBCS), a nationwide representative birth cohort study, children were assessed upon home interview with structured questionnaires at six and eighteen months old. Multivariate logistic and Cox proportional hazard regression adjusting confounding factors were applied to examine the odds ratio (OR) and hazard ratio (HR) between household incense burning exposure and caregiver-reported neurodevelopment milestones.
Results: In this study, 15,310 term singletons were included, and household incense burning was associated with delay in gross motor neurodevelopment milestone, such as walking with support (Occasional incense burning: OR = 1.26, 95% confidence interval (CI): 1.08 to 1.47, HR= 1.07, 95% CI: 1.03 to 1.11; persistent incense burning : OR = 1.44, 95% CI: 1.22 to 1.69, HR= 1.11, 95% CI: 1.07 to 1.16) and walking steadily (Occasional incense burning: OR = 1.14, 95% CI: 0.98 to 1.32, HR= 1.07, 95% CI: 1.03 to 1.11, persistent incense burning : OR = 1.24, 95% CI: 1.06 to 1.45, HR= 1.09, 95% CI: 1.04 to 1.13).
Conclusions: Our study suggested household incense burning exposure was associated with delay in gross motor milestones. Further research is warranted to elucidate the possible mechanism and causal relationship.
ABSTRACT: PART II
Background: Maternal shift work has been found to associate with preterm delivery, childhood obesity and future behavioural problems. However, the adverse effects on and interactions of maternal shift work on infant neurodevelopment remain uncertain. Therefore, we aimed to examine the associations between maternal shift work status and infant neurodevelopmental parameters.
Methods: The Taiwan Birth Cohort Study (TBCS) is a nationwide birth cohort study following representatively sampled mother-infant pairs dyads since 2005. The participants’ development and exposure conditions were assessed by home interview with structured questionnaires at six and eighteen months of age. Propensity scores were calculated with predefined covariates for 1:1 matching. Multivariate conditional logistic regression and the Cox proportional hazards model were used to examine the association between maternal shift work status and caregiver-reported infant neurodevelopmental milestones.
Results: In this study, 5 813 term singletons were included, with 1 900 cases selected in the propensity score-matched subpopulation. Persistent maternal shift work was associated with an increased risk of delay in caregiver-reported gross motor milestones (adjusted odds ratio (aOR)=1.30, 95% confidence interval (CI) =1.02-1.66 for walking with support; aOR=1.41, 95% CI=1.10-1.79 for walking steadily; adjusted hazard ratio (aHR)=1.08, 95% CI=1.01-1.17 for walking with support; aHR=1.07, 95% CI=1.00 to 1.16 for walking steadily). Moreover, delayed fine motor and social development were shown in the propensity score-matched subcohort.
Conclusions: This study shows significant negative associations between maternal shift work and delayed neurodevelopmental milestone achievement in the gross motor, fine motor and social milestones at eighteen months of age. Future research is indicated to elucidate the possible underlying mechanisms and long-term health effects.
誌謝 ....................................................................................................................................i
第一部份中文摘要.......................................................................................................... ii
第二部份中文摘要......................................................................................................... iii
ABSTRACT: PART I .......................................................................................................iv
ABSTRACT: PART II .......................................................................................................v
CONTENTS .....................................................................................................................vi
LIST OF FIGURES....................................................................................................... viii
LIST OF TABLES............................................................................................................ix
Chapter 1 Introduction..............................................................................................2
Chapter 2 Method ......................................................................................................4
2.1 Study population and data collection .............................................................4
2.2 Exposure measurement and definitions ..........................................................4
2.3 Neurodevelopmental outcomes and milestones ..............................................5
2.4 Confounding variables ...................................................................................6
2.5 Statistical analysis ..........................................................................................7
Chapter 3 Results .......................................................................................................9
3.1 Baseline characteristics of the population .....................................................9
3.2 Distribution of developmental milestones ....................................................10
3.3 Incense burning and delayed developmental milestones..............................10
3.4 Incense burning at home and age of achieving developmental milestones ..11
3.5 Sensitivity analysis........................................................................................12
Chapter 4 Discussion................................................................................................13
Chapter 5 Conclusion ..............................................................................................16
Chapter 6 Tables and Figures .................................................................................17
REFERENCE ..................................................................................................................40
Chapter 1 Introduction............................................................................................46
Chapter 2 Methods...................................................................................................48
2.1 Study population and data collection ...........................................................48
2.2 Exposure measurement and definitions ........................................................48
2.3 Neurodevelopmental outcomes and milestones ............................................49
2.4 Confounding variables .................................................................................50
2.5 Propensity score and statistical analysis......................................................51
Chapter 3 Results .....................................................................................................53
3.1 Baseline characteristics of the population ...................................................53
3.2 Distribution of developmental milestones ....................................................54
3.3 Maternal shift work and delayed developmental milestones........................55
3.4 Maternal shift work and age of achieving developmental milestones..........56
3.5 Sensitivity analysis........................................................................................56
Chapter 4 Discussion................................................................................................58
Chapter 5 Conclusion ..............................................................................................61
Chapter 6 Tables and Figures .................................................................................62
REFERENCE ..................................................................................................................86
Allen JL, Liu X, Pelkowski S, Palmer B, Conrad K, Oberdorster G, et al. 2014. Early postnatal exposure to ultrafine particulate matter air pollution: Persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ Health Perspect 122:939-945.
Ashmore MR, Dimitroulopoulou C. 2009. Personal exposure of children to air pollution. Atmospheric Environment 43:128-141.
Basagana X, Esnaola M, Rivas I, Amato F, Alvarez-Pedrerol M, Forns J, et al. 2016. Neurodevelopmental deceleration by urban fine particles from different emission sources: A longitudinal observational study. Environ Health Perspect 124:1630-1636.
Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen JC, et al. 2012. The outdoor air pollution and brain health workshop. Neurotoxicology 33:972-984.
Brown LA, Khousbouei H, Goodwin JS, Irvin-Wilson CV, Ramesh A, Sheng L, et al. 2007. Down-regulation of early ionotrophic glutamate receptor subunit developmental expression as a mechanism for observed plasticity deficits following gestational exposure to benzo(a)pyrene. Neurotoxicology 28:965-978.
Calderon-Garciduenas L, Leray E, Heydarpour P, Torres-Jardon R, Reis J. 2016. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev Neurol (Paris) 172:69-80.
Chen LY, Ho C. 2016. Incense burning during pregnancy and birth weight and head circumference among term births: The taiwan birth cohort study. Environ Health Perspect 124:1487-1492.
Chiang KC, Liao CM. 2006. Heavy incense burning in temples promotes exposure risk from airborne pms and carcinogenic pahs. Sci Total Environ 372:64-75.
Chiu WC, Liao HF, Chang PJ, Chen PC, Chen YC. 2011. Duration of breast feeding and risk of developmental delay in taiwanese children: A nationwide birth cohort study. Paediatr Perinat Epidemiol 25:519-527.
Chuang HC, Jones T, Chen TT, BeruBe K. 2013. Cytotoxic effects of incense particles in relation to oxidative stress, the cell cycle and f-actin assembly. Toxicol Lett 220:229-237.
Cohen R, Sexton KG, Yeatts KB. 2013. Hazard assessment of united arab emirates (uae) incense smoke. Sci Total Environ 458-460:176-186.
Frankenburg WK, Fandal AW, Thornton SM. 1987. Revision of denver prescreening developmental questionnaire. The Journal of Pediatrics 110:653-657.
Friborg JT, Yuan JM, Wang R, Koh WP, Lee HP, Yu MC. 2008. Incense use and respiratory tract carcinomas: A prospective cohort study. Cancer 113:1676-1684.
Han YY, Lee YL, Guo YL. 2009. Indoor environmental risk factors and seasonal variation of childhood asthma. Pediatr Allergy Immunol 20:748-756.
Harris MH, Gold DR, Rifas-Shiman SL, Melly SJ, Zanobetti A, Coull BA, et al. 2015. Prenatal and childhood traffic-related pollution exposure and childhood cognition in the project viva cohort (massachusetts, USA). Environ Health Perspect 123:1072-1078.
Harris MH, Gold DR, Rifas-Shiman SL, Melly SJ, Zanobetti A, Coull BA, et al. 2016. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior. Neurotoxicol Teratol 57:60-70.
Ho CK, Tseng WR, Yang CY. 2005. Adverse respiratory and irritant health effects in temple workers in taiwan. J Toxicol Environ Health A 68:1465-1470.
Hussain T, Al-Attas OS, Al-Daghri NM, Mohammed AA, De Rosas E, Ibrahim S, et al. 2014. Induction of cyp1a1, cyp1a2, cyp1b1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol Cell Biochem 391:127-136.
Hwang YH, Lin YS, Lin CY, Wang IJ. 2014. Incense burning at home and the blood lead level of preschoolers in taiwan. Environ Sci Pollut Res Int 21:13480-13487.
Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, Mroz E, et al. 2015. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res Int 22:3631-3639.
Lee YL, Lin YC, Hsiue TR, Hwang BF, Guo YL. 2003. Indoor and outdoor environmental exposures, parental atopy, and physician-diagnosed asthma in taiwanese schoolchildren. Pediatrics 112:e389-e389.
Lin CC, Yang SK, Lin KC, Ho WC, Hsieh WS, Shu BC, et al. 2014. Multilevel analysis of air pollution and early childhood neurobehavioral development. Int J Environ Res Public Health 11:6827-6841.
Lin TC, Yang CR, Chang FH. 2007. Burning characteristics and emission products related to metallic content in incense. J Hazard Mater 140:165-172.
Lin TC, Krishnaswamy G, Chi DS. 2008. Incense smoke: Clinical, structural and molecular effects on airway disease. Clin Mol Allergy 6:3.
Lung FW, Chiang TL, Lin SJ, Shu BC. 2013. Incinerator pollution and child development in the taiwan birth cohort study. Int J Environ Res Public Health 10:2241-2257.
Navasumrit P, Arayasiri M, Hiang OM, Leechawengwongs M, Promvijit J, Choonvisase S, et al. 2008. Potential health effects of exposure to carcinogenic compounds in incense smoke in temple workers. Chem Biol Interact 173:19-31.
Nishimura T, Takei N, Tsuchiya KJ, Asano R, Mori N. 2016. Identification of neurodevelopmental trajectories in infancy and of risk factors affecting deviant development: A longitudinal birth cohort study. Int J Epidemiol 45:543-553.
Pan A, Clark ML, Ang LW, Yu MC, Yuan JM, Koh WP. 2014. Incense use and cardiovascular mortality among chinese in singapore: The singapore chinese health study. Environ Health Perspect 122:1279-1284.
Perera FP, Rauh V, Tsai W-Y, Kinney P, Camann D, Barr D, et al. 2002. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environmental Health Perspectives 111:201-205.
Perera FP, Rauh V, Whyatt RM, Tsai W-Y, Tang D, Diaz D, et al. 2006. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environmental Health Perspectives 114:1287-1292.
Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, et al. 2009. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child iq at age 5 years. Pediatrics 124:e195-202.
Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, Nati G, et al. 2015. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 72:531-540.
Saunders CR, Das SK, Ramesh A, Shockley DC, Mukherjee S. 2006. Benzo(a)pyrene-induced acute neurotoxicity in the f-344 rat: Role of oxidative stress. J Appl Toxicol 26:427-438.
Walker SP, Wachs TD, Meeks Gardner J, Lozoff B, Wasserman GA, Pollitt E, et al. 2007. Child development: Risk factors for adverse outcomes in developing countries. The Lancet 369:145-157.
Wang IJ, Tsai CH, Chen CH, Tung KY, Lee YL. 2011. Glutathione s-transferase, incense burning and asthma in children. Eur Respir J 37:1371-1377.
Wang S, Zhang J, Zeng X, Zeng Y, Wang S, Chen S. 2009. Association of traffic-related air pollution with children''s neurobehavioral functions in quanzhou, china. Environ Health Perspect 117:1612-1618.
Yeatts KB, El-Sadig M, Leith D, Kalsbeek W, Al-Maskari F, Couper D, et al. 2012. Indoor air pollutants and health in the united arab emirates. Environ Health Perspect 120:687-694.
Yorifuji T, Kashima S, Higa Diez M, Kado Y, Sanada S, Doi H. 2016. Prenatal exposure to traffic-related air pollution and child behavioral development milestone delays in japan. Epidemiology 27:57-65.
Yorifuji T, Kashima S, Diez MH, Kado Y, Sanada S, Doi H. 2017. Prenatal exposure to outdoor air pollution and child behavioral problems at school age in japan. Environ Int 99:192-198.
Zhou R, An Q, Pan XW, Yang B, Hu J, Wang YH. 2015. Higher cytotoxicity and genotoxicity of burning incense than cigarette. Environmental Chemistry Letters 13:465-471.
1.Labor. USDo. Workers on flexible and shift schedules in May 2004. 2005.
2.Eurofound. Sixth European Working Conditions Survey. 2015. [cited Access 2015 17 Dec 2017]. Available from: http://www.eurofound.europa.eu/sites/default/files/ef_publication/field_ef_document/ef1568en.pdf.
3.McMenamin TM. A time to work: recent trends in shift work and flexible schedules. Monthly Labor Review 2007; 130:3-15.
4.Alterman T, Luckhaupt SE, Dahlhamer JM, Ward BW, Calvert GM. Prevalence rates of work organization characteristics among workers in the U.S.: data from the 2010 National Health Interview Survey. Am J Ind Med 2013; 56:647-659.
5.Wright KP, Jr., Bogan RK, Wyatt JK. Shift work and the assessment and management of shift work disorder (SWD). Sleep Med Rev 2013; 17:41-54.
6.Wagstaff AS, Sigstad Lie JA. Shift and night work and long working hours--a systematic review of safety implications. Scand J Work Environ Health 2011; 37:173-185.
7.Proper KI, van de Langenberg D, Rodenburg W et al. The Relationship Between Shift Work and Metabolic Risk Factors: A Systematic Review of Longitudinal Studies. Am J Prev Med 2016; 50:e147-e157.
8.Kecklund G, Axelsson J. Health consequences of shift work and insufficient sleep. BMJ 2016; 355:i5210.
9.Gan Y, Yang C, Tong X et al. Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med 2015; 72:72-78.
10.Vyas MV, Garg AX, Iansavichus AV et al. Shift work and vascular events: systematic review and meta-analysis. BMJ 2012; 345:e4800.
11.Straif K, Baan R, Grosse Y et al. Carcinogenicity of shift-work, painting, and fire-fighting. The Lancet Oncology 2007; 8:1065-1066.
12.Stocker LJ, Macklon NS, Cheong YC, Bewley SJ. Influence of shift work on early reproductive outcomes: a systematic review and meta-analysis. Obstet Gynecol 2014; 124:99-110.
13.Bonzini M, Palmer KT, Coggon D, Carugno M, Cromi A, Ferrario MM. Shift work and pregnancy outcomes: a systematic review with meta-analysis of currently available epidemiological studies. BJOG 2011; 118:1429-1437.
14.Palmer KT, Bonzini M, Harris EC, Linaker C, Bonde JP. Work activities and risk of prematurity, low birth weight and pre-eclampsia: an updated review with meta-analysis. Occup Environ Med 2013; 70:213-222.
15.Champion SL, Rumbold AR, Steele EJ, Giles LC, Davies MJ, Moore VM. Parental work schedules and child overweight and obesity. Int J Obes (Lond) 2012; 36:573-580.
16.Li J, Johnson SE, Han WJ et al. Parents'' nonstandard work schedules and child well-being: a critical review of the literature. J Prim Prev 2014; 35:53-73.
17.Grzywacz JG, Leerkes EM, Reboussin BA, Suerken CK, Payne CC, Daniel SS. Nonstandard maternal work schedules and infant mental health in impoverished families: A brief report. Infant Behav Dev 2016; 45:18-21.
18.Odom EC, Vernon-Feagans L, Crouter AC. Nonstandard Maternal Work Schedules: Implications for African American Children''s Early Language Outcomes. Early Child Res Q 2013; 28:379-387.
19.Daniel SS, Grzywacz JG, Leerkes E, Tucker J, Han WJ. Nonstandard maternal work schedules during infancy: implications for children''s early behavior problems. Infant Behav Dev 2009; 32:195-207.
20.Rosenbaum E, Morett CR. The effect of parents'' joint work schedules on infants'' behavior over the first two years of life: evidence from the ECLSB. Matern Child Health J 2009; 13:732-744.
21.Frankenburg WK, Fandal AW, Thornton SM. Revision of Denver Prescreening Developmental Questionnaire. The Journal of Pediatrics 1987; 110:653-657.
22.Chiu WC, Liao HF, Chang PJ, Chen PC, Chen YC. Duration of breast feeding and risk of developmental delay in Taiwanese children: a nationwide birth cohort study. Paediatr Perinat Epidemiol 2011; 25:519-527.
23.Hsieh WS, Wu HC, Jeng SF et al. Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998-2002. Acta Paediatr Taiwan 2006; 47:25-33.
24.Sagrillo-Fagundes L, Maria Assuncao Salustiano E, Wong Yen P, Soliman A, Vaillancourt C. Melatonin in Pregnancy: Effects on Brain Development and CNS Programming Disorders. Current Pharmaceutical Design 2016; 22:978-986.
25.Jin Y, Choi J, Won J, Hong Y. The Relationship between Autism Spectrum Disorder and Melatonin during Fetal Development. Molecules 2018; 23.
26.Welin AK, Svedin P, Lapatto R et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 2007; 61:153-158.
27.Liu S, Guo Y, Yuan Q et al. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy. J Pineal Res 2015; 59:508-517.
28.Tordjman S, Chokron S, Delorme R et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol 2017; 15:434-443.
29.Hunter CM, Figueiro MG. Measuring Light at Night and Melatonin Levels in Shift Workers: A Review of the Literature. Biol Res Nurs 2017; 19:365-374.
30.Han WJ. Shift Work and Child Behavioral Outcomes. Work Employ Soc 2008; 22:67-87.
31.Han WJ, Fox LE. Parental Work Schedules and Children''s Cognitive Trajectories. J Marriage Fam 2011; 73:962-980.
32.Joshi P, Bogen K. Nonstandard Schedules and Young Childrens Behavioral Outcomes Among Working Low-Income Families. Journal of Marriage and Family 2007; 69:139-156.
33.Sices L. Use of Developmental Milestones in Pediatric Residency Training and Practice: Time to Rethink the Meaning of the Mean. Journal of Developmental & Behavioral Pediatrics 2007; 28:47-52.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔