|
You, W. and M. Henneberg, Cancer incidence increasing globally: The role of relaxed natural selection. Evol Appl, 2018. 11(2): p. 140-152.
2.
Young, L.S., L.F. Yap, and P.G. Murray, Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer, 2016. 16(12): p. 789-802.
3.
Murray, P.G. and L.S. Young, Epstein-Barr virus infection: basis of malignancy and potential for therapy. Expert Rev Mol Med, 2001. 3(28): p. 1-20.
4.
Thorley-Lawson, D.A., Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol, 2001. 1(1): p. 75-82.
5.
Young, L.S. and A.B. Rickinson, Epstein–Barr virus: 40 years on. Nature Reviews Cancer, 2004. 4: p. 757.
6.
Dirmeier, U., et al., Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus. Cancer Res, 2003. 63(11): p. 2982-9.
7.
Kempkes, B. and P.D. Ling, EBNA2 and Its Coactivator EBNA-LP, in Epstein Barr Virus Volume 2: One Herpes Virus: Many Diseases, C. Münz, Editor. 2015, Springer International Publishing: Cham. p. 35-59.
8.
Morrison, J.A., A.J. Klingelhutz, and N. Raab-Traub, Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol, 2003. 77(22): p. 12276-84.
9.
Shackelford, J., C. Maier, and J.S. Pagano, Epstein-Barr virus activates beta-catenin in type III latently infected B lymphocyte lines: association with deubiquitinating enzymes. Proc Natl Acad Sci U S A, 2003. 100(26): p. 15572-6.
10.
Everly, D.N., Jr., S. Kusano, and N. Raab-Traub, Accumulation of cytoplasmic beta-catenin and nuclear glycogen synthase kinase 3beta in Epstein-Barr virus-infected cells. J Virol, 2004. 78(21): p. 11648-55.
11.
Feron, O., Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol, 2009. 92(3): p. 329-33.
12.
Hay, N., Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer, 2016. 16(10): p. 635-49.
13.
Corbet, C., et al., Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects. Nat Commun, 2018. 9(1): p. 1208.
14.
Lee, Dong C., et al., A Lactate-Induced Response to Hypoxia. Cell, 2015. 161(3): p. 595-609.
15.
Miranda-Goncalves, V., et al., Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas. Oncotarget, 2016. 7(29): p. 46335-46353.
16.Halestrap, A.P., The monocarboxylate transporter family--Structure and functional
28
characterization. IUBMB Life, 2012. 64(1): p. 1-9.
17.
Halestrap, A.P. and M.C. Wilson, The monocarboxylate transporter family--role and regulation. IUBMB Life, 2012. 64(2): p. 109-19.
18.
Sprowl-Tanio, S., et al., Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer Metab, 2016. 4: p. 20.
19.
Peng, C.W., et al., Hsp72 up-regulates Epstein-Barr virus EBNALP coactivation with EBNA2. Blood, 2007. 109(12): p. 5447-54.
20.
Liu, C.D., et al., The nuclear chaperone nucleophosmin escorts an Epstein-Barr Virus nuclear antigen to establish transcriptional cascades for latent infection in human B cells. PLoS Pathog, 2012. 8(12): p. e1003084.
21.
Menezes, J., et al., Establishment and characterization of an Epstein-Barr virus
(EBC)-negativelymphoblastoidBcellline(BJA-B)fromanexceptional, EBV-genome-negative African Burkitt's lymphoma. Biomedicine, 1975. 22(4): p. 276-84.
22.
Takada, K., et al., An Epstein-Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes, 1991. 5(2): p. 147-56.
23.
Peng, C.-W., et al., Direct interactions between Epstein–Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Vol. 101. 2004. 1033-8.
24.
Peng, C.-W., B. Zhao, and E. Kieff, Four EBNA2 domains are important for EBNALP
coactivation. Vol. 78. 2004. 11439-42.
25.
Chen, Y.-L., et al., Nucleolin is important for Epstein–Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proceedings of the National Academy of Sciences, 2014. 111(1): p. 243-248.
26.
Price, T.N., N.V. Jackson, and P.A. Halestrap, Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochemical Journal, 1998. 329(2): p. 321.
27.
Pinheiro, C., et al., Characterization of monocarboxylate transporters (MCTs) expression in soft tissue sarcomas: distinct prognostic impact of MCT1 sub-cellular localization. Journal of Translational Medicine, 2014. 12(1): p. 118.
28.
Hashimoto, T., R. Hussien, and G.A. Brooks, Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. American Journal of Physiology-Endocrinology and Metabolism, 2006. 290(6): p. E1237-E1244.
29.
Butz, C.E., G.B. McClelland, and G.A. Brooks, MCT1 confirmed in rat striated muscle mitochondria. Journal of Applied Physiology, 2004. 97(3): p. 1059-1066.
30.
Brooks, G., et al., Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. Vol. 87. 1999. 1713-8.
29
31.
Doherty, J.R., et al., Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. Cancer Res, 2014. 74(3): p. 908-20.
32.
Doherty, J.R., et al., Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis. Cancer Research, 2014. 74(3): p. 908.
33.
Jiang, S., et al., The Epstein-Barr Virus Regulome in Lymphoblastoid Cells. Cell Host & Microbe, 2017. 22(4): p. 561-573.e4.
34.
Zhao, B., et al., Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A, 2011. 108(36): p. 14902-7.
35.
Luo, J.-L., H. Kamata, and M. Karin, IKK/NF-κB signaling: balancing life and death – a new approach to cancer therapy. Journal of Clinical Investigation, 2005. 115(10): p. 2625-2632.
36.
Maeda, S., et al., IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFalpha. Immunity, 2003. 19(5): p. 725-37.
37.
Weil, R. and A. Israel, T-cell-receptor- and B-cell-receptor-mediated activation of NF-kappaB in lymphocytes. Curr Opin Immunol, 2004. 16(3): p. 374-81.
38.
Nakayama, Y., et al., Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer. Exp Ther Med, 2012. 3(1): p. 25-30.
39.
Pinheiro, C., et al., Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Vol. 452. 2008. 139-46.
40.
Pinheiro, C., et al., Role of monocarboxylate transporters in human cancers: state of the art. Journal of Bioenergetics and Biomembranes, 2012. 44(1): p. 127-139.
41.
Pinheiro, C., et al., Characterization of monocarboxylate transporters (MCTs) expression in soft tissue sarcomas: distinct prognostic impact of MCT1 sub-cellular localization. J Transl Med, 2014. 12: p. 118.
42.
Froberg, M.K., et al., Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. Neuroreport, 2001. 12(4): p. 761-5.
43.
Miranda-Goncalves, V., et al., Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol, 2013. 15(2): p. 172-88.
44.
Shi, B., et al., Expression of the candidate MCT-1 oncogene in B- and T-cell lymphoid
malignancies. Vol. 102. 2003. 297-302.
45.
Shi, B., et al., Expression of the candidate MCT-1 oncogene in B- and T-cell lymphoid malignancies. Blood, 2003. 102(1): p. 297.
46.Dai, B. and R. Gartenhaus, Therapeutic targeting of MCT-1 in diffuse large B-cell lymphoma. Clinical Cancer Research, 2008. 14(19 Supplement): p. B50.
47.
Bola, B.M., et al., Inhibition of Monocarboxylate Transporter-1 (MCT1) by AZD3965 Enhances Radiosensitivity by Reducing Lactate Transport. Molecular Cancer Therapeutics, 2014. 13(12): p. 2805.
30
48.
Doherty, J., et al., Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables
Glycolysis and Glutathione Synthesis. Vol. 74. 2013.
49.
Gan, L., et al., Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters. Oncogene, 2015. 35: p. 3037.
50.
Cahir McFarland, E.D., K.M. Izumi, and G. Mosialos, Epstein-barr virus transformation: involvement of latent membrane protein 1-mediated activation of NF-kappaB. Oncogene, 1999. 18(49): p. 6959-64.
51.
Abraham, M.C. and S. Shaham, Death without caspases, caspases without death. Trends in Cell Biology, 2004. 14(4): p. 184-193.
|